We introduce a conceptually simple yet effective model for self-supervised representation learning with graph data. It follows the previous methods that generate two views of an input graph through data augmentation. However, unlike contrastive methods that focus on instance-level discrimination, we optimize an innovative feature-level objective inspired by classical Canonical Correlation Analysis. Compared with other works, our approach requires none of the parameterized mutual information estimator, additional projector, asymmetric structures, and most importantly, negative samples which can be costly. We show that the new objective essentially 1) aims at discarding augmentation-variant information by learning invariant representations, and 2) can prevent degenerated solutions by decorrelating features in different dimensions. Our theoretical analysis further provides an understanding for the new objective which can be equivalently seen as an instantiation of the Information Bottleneck Principle under the self-supervised setting. Despite its simplicity, our method performs competitively on seven public graph datasets.


翻译:我们引入了一个概念上简单而有效的模型,用图表数据进行自我监督的演示学习。它遵循了以往通过数据扩增生成输入图形两种观点的方法。然而,与以实例层面歧视为重点的对比方法不同,我们优化了古典Canonic关联分析所启发的创新性特征层面目标。与其他作品相比,我们的方法不要求任何参数化的相互信息估计器、额外的投影仪、不对称结构,最重要的是,可能代价高昂的负面样本。我们表明,新目标(主要 ) 旨在通过学习变量表征来丢弃增量变量信息, 以及 ( ) 2 能够通过不同层面的解说性特征来防止退化的解决方案。 我们的理论分析进一步为新目标提供了理解,这些新目标可以被等同于自我监督环境下的信息瓶式原则的即时化。 尽管我们的方法很简单,但我们在七个公共图表数据集上进行了竞争。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
37+阅读 · 2020年11月2日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月25日
Arxiv
38+阅读 · 2020年12月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员