System operators are faced with increasingly volatile operating conditions. In order to manage system reliability in a cost-effective manner, control room operators are turning to computerised decision support tools based on AI and machine learning. Specifically, Reinforcement Learning (RL) is a promising technique to train agents that suggest grid control actions to operators. In this paper, a simple baseline approach is presented using RL to represent an artificial control room operator that can operate a IEEE 14-bus test case for a duration of 1 week. This agent takes topological switching actions to control power flows on the grid, and is trained on only a single well-chosen scenario. The behaviour of this agent is tested on different time-series of generation and demand, demonstrating its ability to operate the grid successfully in 965 out of 1000 scenarios. The type and variability of topologies suggested by the agent are analysed across the test scenarios, demonstrating efficient and diverse agent behaviour.
翻译:系统操作员面临越来越不稳定的操作条件。为了以具有成本效益的方式管理系统的可靠性,控制室操作员正在转向基于AI和机器学习的计算机化决策支持工具。具体地说,加强学习是培训向操作员建议电网控制行动的代理商的有希望的技术。在本文中,提出一个简单的基线方法,用RL代表一个人工控制室操作员,该操作员可以操作IEEE 14-Bus测试,为期1周。该代理商采取地形转换行动来控制电网上的电流,并仅就单一的选好方案进行培训。该代理商的行为在不同的时间序列中进行生成和需求测试,表明其在1000个情景中965年成功操作电网的能力。该代理商建议的地形类型和变异性将在整个测试情景中进行分析,以显示高效和多样的代理商行为。