We introduce Fed-Span, a novel federated/distributed learning framework designed for low Earth orbit satellite constellations. By leveraging graph-theoretic principles, Fed-Span addresses critical challenges inherent to distributed learning in dynamic satellite networks, including intermittent satellite connectivity, heterogeneous computational capabilities of satellites, and time-varying satellites' datasets. At its core, Fed-Span builds upon minimum spanning tree (MST) and minimum spanning forest (MSF) topologies, enabling spanning model aggregation and dispatching processes for distributed learning. To formalize Fed-Span, we offer a fresh perspective on MST/MSF topologies by formulating them through a set of continuous constraint representations (CCRs), thereby devising graph-theoretical abstractions into an optimizable framework for satellite networks. Using these CCRs, we obtain the energy consumption and latency of operations in Fed-Span. Moreover, we derive novel convergence bounds for non-convex machine learning loss functions, accommodating the key system characteristics and degrees of freedom of Fed-Span. Finally, we propose a comprehensive optimization problem that jointly minimizes model prediction loss, energy consumption, and latency of Fed-Span. We unveil that this problem is NP-hard and develop a systematic approach to transform it into a geometric programming formulation, solved via successive convex optimization with performance guarantees. Through evaluations on real-world datasets, we demonstrate that Fed-Span outperforms existing methods, with faster model convergence, greater energy efficiency, and reduced latency. These results highlight Fed-Span as a novel solution for efficient distributed learning in satellite networks.
翻译:暂无翻译