Some response surface functions in complex engineering systems are usually highly nonlinear, unformed, and expensive-to-evaluate. To tackle this challenge, Bayesian optimization, which conducts sequential design via a posterior distribution over the objective function, is a critical method used to find the global optimum of black-box functions. Kernel functions play an important role in shaping the posterior distribution of the estimated function. The widely used kernel function, e.g., radial basis function (RBF), is very vulnerable and susceptible to outliers; the existence of outliers is causing its Gaussian process surrogate model to be sporadic. In this paper, we propose a robust kernel function, Asymmetric Elastic Net Radial Basis Function (AEN-RBF). Its validity as a kernel function and computational complexity are evaluated. When compared to the baseline RBF kernel, we prove theoretically that AEN-RBF can realize smaller mean squared prediction error under mild conditions. The proposed AEN-RBF kernel function can also realize faster convergence to the global optimum. We also show that the AEN-RBF kernel function is less sensitive to outliers, and hence improves the robustness of the corresponding Bayesian optimization with Gaussian processes. Through extensive evaluations carried out on synthetic and real-world optimization problems, we show that AEN-RBF outperforms existing benchmark kernel functions.
翻译:复杂工程系统中的一些应对表面功能通常高度不线性、不完善和昂贵而需要评估。为了应对这一挑战,通过对目标函数的后端分布进行顺序设计的贝叶斯优化,通过对目标函数的后端分布进行顺序设计,这是用于寻找黑箱功能全球最佳化的关键方法。内尔函数在影响估计函数的后端分布方面起着重要作用。广泛使用的内核功能,例如,辐射基础功能(RBF)非常脆弱,很容易受到外部线的干扰;外部线的存在正在使其高斯进程代孕模型零星化。在本文件中,我们提出一个强大的内核功能,即对等离子网络辐射基础功能进行对黑箱功能的全球最佳化。对内核功能作为估计函数和计算复杂性的正确性进行评估。与基准RBF内核功能相比,我们从理论上证明AN-RBF在轻度条件下可以发现更小的中度平方预测错误。拟议的AEN-RBF内核内核元功能也可以更快地实现与全球最佳化的同步化。我们还显示,ABF的当前最不那么的周期性、更精确的机能性,使AND-RBSBSBA-SBRBS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SBAR-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SBAR-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-