In recent years, hate speech has gained great relevance in social networks and other virtual media because of its intensity and its relationship with violent acts against members of protected groups. Due to the great amount of content generated by users, great effort has been made in the research and development of automatic tools to aid the analysis and moderation of this speech, at least in its most threatening forms. One of the limitations of current approaches to automatic hate speech detection is the lack of context. Most studies and resources are performed on data without context; that is, isolated messages without any type of conversational context or the topic being discussed. This restricts the available information to define if a post on a social network is hateful or not. In this work, we provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter. This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic. Classification experiments using state-of-the-art techniques show evidence that adding contextual information improves hate speech detection performance for two proposed tasks (binary and multi-label prediction). We make our code, models, and corpus available for further research.
翻译:近年来,仇恨言论在社交网络和其他虚拟媒体中变得非常重要,因为其强度及其与针对受保护群体成员的暴力行为的关系,仇恨言论在社交网络和其他虚拟媒体中变得非常相关。由于用户生成了大量内容,因此在研究和开发自动工具以帮助分析和缓和这一言论方面做出了巨大努力,至少是其最具有威胁性的形式。目前自动识别仇恨言论的方法的局限性之一是缺乏背景。大多数研究和资源都是根据没有背景的数据进行的;也就是说,孤立信息没有任何形式的交谈背景或讨论的议题。这限制了现有信息,无法确定社交网络上的一个职位是否具有仇恨性。在这项工作中,我们根据用户对Twitter媒体发布的新闻文章的反应,为识别带有背景的仇恨言论提供了一套新资料。该资料收集在西班牙的Rioplatency辩证形式中,重点是与COVID-19流行病相关的仇恨言论。使用最新技术进行的分类实验表明,在拟议的两项任务(二进制和多标签预测)中添加了背景信息可以提高仇恨言论的性能。我们为进一步研究提供了代码、模型和材料。