We consider the problem of detecting abrupt changes in the distribution of a multi-dimensional time series, with limited computing power and memory. In this paper, we propose a new method for model-free online change-point detection that relies only on fast and light recursive statistics, inspired by the classical Exponential Weighted Moving Average algorithm (EWMA). The proposed idea is to compute two EWMA statistics on the stream of data with different forgetting factors, and to compare them. By doing so, we show that we implicitly compare recent samples with older ones, without the need to explicitly store them. Additionally, we leverage Random Features to efficiently use the Maximum Mean Discrepancy as a distance between distributions. We show that our method is orders of magnitude faster than usual non-parametric methods for a given accuracy.
翻译:我们考虑了发现多维时间序列分布突变的问题,该数字序列的计算功能和内存有限。在本文中,我们提出了一种新的无模型在线变化点检测方法,该方法仅依赖于快速和光重循环统计数据,受古典光学加权移动平均算法(EWMA ) 的启发。拟议的想法是用不同的遗忘因素来计算两个关于数据流的欧洲经济、社会、事务部统计数据,并进行比较。我们这样做表明,我们隐含地将最近的样本与老样本进行比较,而不需要明确储存这些样本。此外,我们利用随机特征有效地使用最大平均值差异作为分布之间的距离。我们显示,我们的方法比通常的非对称方法要快得多,以达到一定的准确性。