Under-reporting of count data poses a major roadblock for prediction and inference. In this paper, we focus on the Pogit model, which deconvolves the generating Poisson process from the censuring process controlling under-reporting using a generalized linear modeling framework. We highlight the limitations of the Pogit model and address them by adding constraints to the estimation framework. We also develop uncertainty quantification techniques that are robust to model mis-specification. Our approach is evaluated using synthetic data and applied to real healthcare datasets, where we treat in-patient data as `reported' counts and use held-out total injuries to validate the results. The methods make it possible to separate the Poisson process from the under-reporting process, given sufficient expert information. Codes to implement the approach are available via an open source Python package.


翻译:统计数据少报是预测和推论的一大障碍。在本文中,我们侧重于Pogit模型,该模型利用一个普遍的线性模型框架,将产生Poisson过程从控制报告不足的感应过程分离出来,我们强调Pogit模型的局限性,并通过增加估计框架的限制来解决这些问题。我们还开发了可靠的不确定性量化技术,以模拟错误的区分。我们的方法是使用合成数据进行评估,并应用到真正的保健数据集中,我们把住院数据作为“报告”计数,并使用被搁置的完全损伤来验证结果。这些方法使得将Poisson过程与报告不足过程分开,只要有足够的专家信息。通过开放源Python软件包提供实施方法的代码。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员