We give algorithms for computing coresets for $(1+\varepsilon)$-approximate $k$-median clustering of polygonal curves (under the discrete and continuous Fr\'{e}chet distance) and point sets (under the Hausdorff distance), when the cluster centers are restricted to be of low complexity. Ours is the first such result, where the size of the coreset is independent of the number of input curves/point sets to be clustered (although it still depends on the maximum complexity of each input object). Specifically, the size of the coreset is $\Theta\left(\frac{k^3lm^{\delta}d}{\varepsilon^2}\log\left( \frac{kl}{\varepsilon}\right)\right)$ for any $\delta > 0$, where $d$ is the ambient dimension, $m$ is the maximum number of points in an input curve/point set, and $l$ is the maximum number of points allowed in a cluster center. We formally characterize a general condition on the restricted space of cluster centers -- this helps us to generalize and apply the importance sampling framework, that was used by Langberg and Schulman for computing coresets for $k$-median clustering of $d$-dimensional points on normed spaces in $\mathbb{R}^d$, to the problem of clustering curves and point sets using the Fr\'{e}chet and Hausdorff metrics. Roughly, the condition places an upper bound on the number of different combinations of metric balls that the restricted space of cluster centers can hit. We also derive lower bounds on the size of the coreset, given the restriction that the coreset must be a subset of the input objects.


翻译:当聚居中心被限制为低复杂度时,我们为计算$(1 ⁇ {varepsilon{}$- 近k$- 中间值组合多角曲线(在离散和连续 Fr\{e}chelch 距离下) 和点集(在Hausdorf 距离下) 计算核心设置的算法。我们是第一个这样的结果,其中核心设置的大小独立于要集中的输入曲线/点数(尽管它仍然取决于每个输入对象的最大复杂性)。具体地说,核心设置的大小是 $tasetleft (在离散和连续的 Fr\\ varus}delta}d\ valepsilon\\\\\\ log\ left (在Hausdleft 距离下) 和点组群落的中间组合群落群落(在输入曲线/点中的最大点数) 。我们正式确定一个总的情况,在使用中央阵列的中央集域中心, 和中央的中央的中央數中心 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年5月26日
专知会员服务
53+阅读 · 2021年5月17日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
0+阅读 · 2021年6月12日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年5月26日
专知会员服务
53+阅读 · 2021年5月17日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员