Satellite remote imaging enables the detailed study of land use patterns on a global scale. We investigate the possibility to improve the information content of traditional land use classification by identifying the nature of industrial sites from medium-resolution remote sensing images. In this work, we focus on classifying different types of power plants from Sentinel-2 imaging data. Using a ResNet-50 deep learning model, we are able to achieve a mean accuracy of 90.0% in distinguishing 10 different power plant types and a background class. Furthermore, we are able to identify the cooling mechanisms utilized in thermal power plants with a mean accuracy of 87.5%. Our results enable us to qualitatively investigate the energy mix from Sentinel-2 imaging data, and prove the feasibility to classify industrial sites on a global scale from freely available satellite imagery.
翻译:卫星远程成像使得能够在全球范围内详细研究土地使用模式。我们研究是否有可能通过中分辨率遥感图像确定工业地点的性质来改进传统土地使用分类的信息内容。在这项工作中,我们侧重于从Sentinel-2成像数据中对不同类型的发电厂进行分类。我们使用ResNet-50深层学习模型,在区分10种不同的发电厂类型和背景类别时,能够达到90.0%的平均准确率。此外,我们能够确定热电厂使用的冷却机制,平均准确率为87.5%。我们的结果使我们能够从质量上调查Sentinel-2成像数据中的能源组合,并证明从可自由获取的卫星图像中对全球工业地点进行分类的可行性。