A new approach called NAF (the Neural Attention Forest) for solving regression and classification tasks under tabular training data is proposed. The main idea behind the proposed NAF model is to introduce the attention mechanism into the random forest by assigning attention weights calculated by neural networks of a specific form to data in leaves of decision trees and to the random forest itself in the framework of the Nadaraya-Watson kernel regression. In contrast to the available models like the attention-based random forest, the attention weights and the Nadaraya-Watson regression are represented in the form of neural networks whose weights can be regarded as trainable parameters. The first part of neural networks with shared weights is trained for all trees and computes attention weights of data in leaves. The second part aggregates outputs of the tree networks and aims to minimize the difference between the random forest prediction and the truth target value from a training set. The neural network is trained in an end-to-end manner. The combination of the random forest and neural networks implementing the attention mechanism forms a transformer for enhancing the forest predictions. Numerical experiments with real datasets illustrate the proposed method. The code implementing the approach is publicly available.


翻译:本論文提出了一種名為NAF(神經注意力森林)的新方法,用於處理表格訓練數據下的回歸和分類任務。所提出的NAF模型的主要思想是通過將一個特定形式的神經網絡計算的注意力權重分配給決策樹的葉子和隨機森林本身,在Nadaraya-Watson核回歸的框架中引入注意機制。與可用模型(如基於注意力的隨機森林)不同,注意力權重和Nadaraya-Watson回歸以可訓練的參數形式表示為神經網絡的權重。對於所有樹木訓練的共享權重的第一部分計算葉子數據的注意力權重,第二部分聚合樹網絡的輸出,旨在最小化隨機森林預測和訓練集真實目標值之間的差異。神經網絡以端到端的方式訓練。隨機森林和實現注意機制的神經網絡的組合形成了一個Transformer,用於增強森林的預測能力。使用實際數據集進行的數值實驗說明了所提出的方法。實現該方法的代碼公開可用。

0
下载
关闭预览

相关内容

IBM 开发的继深蓝之后的新一代大型计算机。 Watson得名于IBM创始人Thomas J. Watson,是当下人工智能的最高端应用。
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
从Seq2seq到Attention模型到Self Attention(二)
量化投资与机器学习
22+阅读 · 2018年10月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年10月15日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员