Recent research about margin theory has proved that maximizing the minimum margin like support vector machines does not necessarily lead to better performance, and instead, it is crucial to optimize the margin distribution. In the meantime, margin theory has been used to explain the empirical success of deep network in recent studies. In this paper, we present mdNet (the Optimal Margin Distribution Network), a network which embeds a loss function in regard to the optimal margin distribution. We give a theoretical analysis of our method using the PAC-Bayesian framework, which confirms the significance of the margin distribution for classification within the framework of deep networks. In addition, empirical results show that the mdNet model always outperforms the baseline cross-entropy loss model consistently across different regularization situations. And our mdNet model also outperforms the cross-entropy loss (Xent), hinge loss and soft hinge loss model in generalization task through limited training data.
翻译:最近有关边际理论的研究证明,尽量扩大最低边距,如辅助矢量机器,并不一定能带来更好的性能,相反,优化边际分布至关重要。与此同时,在最近的研究中,边际理论被用来解释深网络的经验成功率。在本文中,我们介绍了MdNet(最佳边际分布网),这是一个在最佳边际分布方面嵌入损失函数的网络。我们用PAC-Bayesian框架对我们的方法进行了理论分析,这证实了边际分布对于深层网络框架内分类的重要性。此外,实证结果显示,MdNet模型总是在不同的正规化情况中超越基线跨作物损失模型。而我们的网模型通过有限的培训数据,也超越了跨作物损失(Xent),在一般化任务中将损失和软链损失模型联系起来。