In biomedical image analysis, the applicability of deep learning methods is directly impacted by the quantity of image data available. This is due to deep learning models requiring large image datasets to provide high-level performance. Generative Adversarial Networks (GANs) have been widely utilized to address data limitations through the generation of synthetic biomedical images. GANs consist of two models. The generator, a model that learns how to produce synthetic images based on the feedback it receives. The discriminator, a model that classifies an image as synthetic or real and provides feedback to the generator. Throughout the training process, a GAN can experience several technical challenges that impede the generation of suitable synthetic imagery. First, the mode collapse problem whereby the generator either produces an identical image or produces a uniform image from distinct input features. Second, the non-convergence problem whereby the gradient descent optimizer fails to reach a Nash equilibrium. Thirdly, the vanishing gradient problem whereby unstable training behavior occurs due to the discriminator achieving optimal classification performance resulting in no meaningful feedback being provided to the generator. These problems result in the production of synthetic imagery that is blurry, unrealistic, and less diverse. To date, there has been no survey article outlining the impact of these technical challenges in the context of the biomedical imagery domain. This work presents a review and taxonomy based on solutions to the training problems of GANs in the biomedical imaging domain. This survey highlights important challenges and outlines future research directions about the training of GANs in the domain of biomedical imagery.
翻译:在生物医学图像分析中,深层次学习方法的适用性直接受到现有图像数据数量的直接影响,这是因为深层次学习模型需要大型图像数据集才能提供高水平的性能。基因反转网络(GANs)被广泛用来通过合成生物医学图像的生成解决数据限制问题。GAN由两种模型组成。生成模型(一个模型,根据收到的反馈学习如何制作合成图像的模型);歧视模型(一个将图像分类为合成图像或真实图像并向生成者提供反馈的模型)在整个培训过程中,GAN可以遇到一些技术挑战,阻碍生成适当的合成图像。首先,生成器产生相同图像或根据不同的输入特征生成统一图像的模式崩溃问题。第二,不兼容的问题,使脂下降优化优化器无法达到纳什平衡。第三,渐渐渐变的梯度问题使培训行为因歧视者达到最佳分类性表现而发生,而没有向发电机提供有意义的反馈。这些问题导致合成图像的制作过程,妨碍了适当的合成图像的生成。第一,即生成器生成了相同的图像,从而阻碍了适当的合成图像,从而产生了不同的合成合成图像。生成了不同的输入特征图像。第二版的图像结构(GSRIS) 日期。本域域的校域的校域中,因此,对GALF工作的影响没有进行这样的调查。