Unsupervised pretraining has achieved great success and many recent works have shown unsupervised pretraining can achieve comparable or even slightly better transfer performance than supervised pretraining on downstream target datasets. But in this paper, we find this conclusion may not hold when the target dataset has very few labeled samples for finetuning, \ie, few-label transfer. We analyze the possible reason from the clustering perspective: 1) The clustering quality of target samples is of great importance to few-label transfer; 2) Though contrastive learning is essential to learn how to cluster, its clustering quality is still inferior to supervised pretraining due to lack of label supervision. Based on the analysis, we interestingly discover that only involving some unlabeled target domain into the unsupervised pretraining can improve the clustering quality, subsequently reducing the transfer performance gap with supervised pretraining. This finding also motivates us to propose a new progressive few-label transfer algorithm for real applications, which aims to maximize the transfer performance under a limited annotation budget. To support our analysis and proposed method, we conduct extensive experiments on nine different target datasets. Experimental results show our proposed method can significantly boost the few-label transfer performance of unsupervised pretraining.


翻译:未经监督的预培训取得了巨大成功,许多近期工程显示,未经监督的预培训可以比下游目标数据集的监督前培训取得可比甚至稍好一些的转让性能。 但在本文件中,我们发现,当目标数据集的标签样本极少时,在微调、\ie、少数标签传输方面,这一结论可能无法维持。我们从组群角度分析可能的原因:(1) 目标样本的集群质量对少数标签的传输非常重要;(2) 尽管对比式学习对于学习如何分组至关重要,但由于缺乏标签监督,其集群质量仍然低于受监督的预培训。根据分析,我们饶有兴趣地发现,只有将某些未加标签的目标域纳入未经监督的预培训,才能提高集群质量,随后通过受监督的预培训缩小传输性能差距。这一发现还激励我们提出一个新的渐进式、少数标签的真应用程序转移性算法,目的是在有限的注解预算下最大限度地实现传输性能。为了支持我们的分析和拟议方法,我们只能在九个不同目标数据集上进行广泛的实验。实验结果显示,我们提议的方法可以大大提升前的少数标签性转移性。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年3月7日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员