This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects. Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients on the observed covariates. First, the model is embedded within the standard two-dimensional panel framework and restrictions are derived under which the factor structure methods in Bai (2009) lead to consistent estimation of model parameters, but at potentially slow rates of convergence. The second approach utilises popular machine learning techniques to develop group fixed-effects and kernel weighted fixed-effects that are more robust to the multidimensional nature of the problem and can achieve the parametric rate of consistency under certain conditions. Theoretical results and simulations show the benefit of standard two-dimensional panel methods when the structure of the interactive fixed-effect term is known, but also highlight how the group fixed-effects and kernel methods perform well without knowledge of this structure. The methods are implemented to estimate the demand elasticity for beer under a handful of models for demand.


翻译:本文研究三个或三个以上层面的多维面面板数据的线性、添加式分离模型,具有未观测到的互动固定效应。在估计观察到的共差系数时,考虑两种方法来说明这些未观察到的交互式固定效应。首先,模型嵌入标准的二维面面板框架,并作出一些限制,根据这些限制,Bai(2009年)的要素结构方法可得出对模型参数的一致估计,但可能趋同速度较慢。第二种方法利用流行的机器学习技术,开发组群固定效应和内核加权固定效应,这些效应对于问题的多维性质更为强大,在某些条件下可以达到一致性的参数率。理论结果和模拟表明,当知道互动固定效应术语的结构时,标准两维面板方法的好处,但也突出小组固定效应和内核方法如何在不了解这一结构的情况下很好地发挥作用。采用这些方法,根据少数需求模型估计啤酒的需求弹性。</s>

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员