The \emph{chromatic number} of a hypergraph is the smallest number of colors needed to color the vertices such that no edge of at least two vertices is monochromatic. Given a family of geometric objects $\mathcal{F}$ that covers a subset $S$ of the Euclidean space, we can associate it with a hypergraph whose vertex set is $\mathcal F$ and whose edges are those subsets ${\mathcal{F}'}\subset \mathcal F$ for which there exists a point $p\in S$ such that ${\mathcal F}'$ consists of precisely those elements of $\mathcal{F}$ that contain $p$. The question whether $\mathcal F$ can be split into 2 coverings is equivalent to asking whether the chromatic number of the hypergraph is equal to 2. There are a number of competing notions of the chromatic number that lead to deep combinatorial questions already for abstract hypergraphs. In this paper, we concentrate on \emph{geometrically defined} (in short, \emph{geometric}) hypergraphs, and survey many recent coloring results related to them. In particular, we study and survey the following problem, dual to the above covering question. Given a set of points $S$ in the Euclidean space and a family $\mathcal{F}$ of geometric objects of a fixed type, define a hypergraph ${\mathcal H}_m$ on the point set $S$, whose edges are the subsets of $S$ that can be obtained as the intersection of $S$ with a member of $\mathcal F$ and have at least $m$ elements. Is it true that if $m$ is large enough, then the chromatic number of ${\mathcal H}_m$ is equal to 2?


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2021年1月14日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员