The lack of standardization in seizure forecasting slows progress in the field and limits the clinical translation of forecasting models. In this work, we introduce a Python-based framework aimed at streamlining the development, assessment, and documentation of individualized seizure forecasting algorithms. The framework automates data labeling, cross-validation splitting, forecast post-processing, performance evaluation, and reporting. It supports various forecasting horizons and includes a model card that documents implementation details, training and evaluation settings, and performance metrics. Three different models were implemented as a proof-of-concept. The models leveraged features extracted from time series data and seizure periodicity. Model performance was assessed using time series cross-validation and key deterministic and probabilistic metrics. Implementation of the three models was successful, demonstrating the flexibility of the framework. The results also emphasize the importance of careful model interpretation due to variations in probability scaling, calibration, and subject-specific differences. Although formal usability metrics were not recorded, empirical observations suggest reduced development time and methodological consistency, minimizing unintentional variations that could affect the comparability of different approaches. As a proof-of-concept, this validation is inherently limited, relying on a single-user experiment without statistical analyses or replication across independent datasets. At this stage, our objective is to make the framework publicly available to foster community engagement, facilitate experimentation, and gather feedback. In the long term, we aim to contribute to the establishment of a consensus on a standardized methodology for the development and validation of seizure forecasting algorithms in people with epilepsy.
翻译:暂无翻译