In an undirected graph, a matching cut is an edge cut which is also a matching. we refer MATCHING CUT to the problem of deciding if a given graph contain a matching cut or not. For the matching cut problem, the size of the edge cut also known as the number of crossing edges is a natural parameter. Gomes et al. in \cite{Gomes-Sau} showed that MATCHING CUT is FPT when parameterized by maximum size of the edge cut using a reduction on results provided by Marx et. al \cite{marx_treewidth_reduction}. However, they didn't provide an explicit bound on the running time as the treewidth reduction technique of \cite{marx_treewidth_reduction} relies on a MSOL formulation for matching cut and Courcelle's Theorem \cite{courcelle1990monadic} to show fixed parameter tractability. This motivated us to design an FPT algorithm for the MATCHING CUT where the dependence on the parameter is explicit. In this paper we present an FPT algorithm for matching cut problem for general graphs with running time $O(2^{O(k\log k)}n^{O(1)})$. This is the first FPT algorithm for the MATCHING CUT where the dependence on the matching cut size as a parameter is explicit and bounded.

0
下载
关闭预览

相关内容

FPT:International Conference on Field-Programmable Technology。 Explanation:现场可编程技术国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/fpt/

In the weighted bipartite matching problem, the goal is to find a maximum-weight matching in a bipartite graph with nonnegative edge weights. We consider its online version where the first vertex set is known beforehand, but vertices of the second set appear one after another. Vertices of the first set are interpreted as items, and those of the second set as bidders. On arrival, each bidder vertex reveals the weights of all adjacent edges and the algorithm has to decide which of those to add to the matching. We introduce an optimal, $e$-competitive truthful mechanism under the assumption that bidders arrive in random order (secretary model). It has been shown that the upper and lower bound of e for the original secretary problem extends to various other problems even with rich combinatorial structure, one of them being weighted bipartite matching. But truthful mechanisms so far fall short of reasonable competitive ratios once respective algorithms deviate from the original, simple threshold form. The best known mechanism for weighted bipartite matching by Krysta and V\"ocking (ICALP 2012) offers only a ratio logarithmic in the number of online vertices. We close this gap, showing that truthfulness does not impose any additional bounds. The proof technique is new in this surrounding, and based on the observation of an independency inherent to the mechanism. The insights provided hereby are interesting in their own right and appear to offer promising tools for other problems, with or without truthfulness.

0
0
下载
预览

Chordal graphs are characterized as the intersection graphs of subtrees in a tree and such a representation is known as the tree model. Restricting the characterization results in well-known subclasses of chordal graphs such as interval graphs or split graphs. A typical example that behaves computationally different in subclasses of chordal graph is the \textsc{Subset Feedback Vertex Set} (SFVS) problem: given a graph $G=(V,E)$ and a set $S\subseteq V$, SFVS asks for a minimum set of vertices that intersects all cycles containing a vertex of $S$. SFVS is known to be polynomial-time solvable on interval graphs, whereas SFVS remains \NP-complete on split graphs and, consequently, on chordal graphs. Towards a better understanding of the complexity of SFVS on subclasses of chordal graphs, we exploit structural properties of a tree model in order to cope with the hardness of SFVS. Here we consider variants of the \emph{leafage} that measures the minimum number of leaves in a tree model. We show that SFVS can be solved in polynomial time for every chordal graph with bounded leafage. In particular, given a chordal graph on $n$ vertices with leafage $\ell$, we provide an algorithm for SFVS with running time $n^{O(\ell)}$. Pushing further our positive result, it is natural to consider a slight generalization of leafage, the \emph{vertex leafage}, which measures the smallest number among the maximum number of leaves of all subtrees in a tree model. However, we show that it is unlikely to obtain a similar result, as we prove that SFVS remains \NP-complete on undirected path graphs, i.e., graphs having vertex leafage at most two. Moreover, we strengthen previously-known polynomial-time algorithm for SFVS on directed path graphs that form a proper subclass of undirected path graphs and graphs of mim-width one.

0
0
下载
预览

In this paper, we develop and study approximately smooth basis constructions for isogeometric analysis over two-patch domains. One key element of isogeometric analysis is that it allows high order smoothness within one patch. However, for representing complex geometries, a multi-patch construction is needed. In this case, a $C^0$-smooth basis is easy to obtain, whereas $C^1$-smooth isogeometric functions require a special construction. Such spaces are of interest when solving numerically fourth-order PDE problems, such as the biharmonic equation and the Kirchhoff-Love plate or shell formulation, using an isogeometric Galerkin method. With the construction of so-called analysis-suitable $G^1$ (in short, AS-$G^1$) parametrizations, as introduced in (Collin, Sangalli, Takacs; CAGD, 2016), it is possible to construct $C^1$ isogeometric spaces which possess optimal approximation properties. These geometries need to satisfy certain constraints along the interfaces and additionally require that the regularity $r$ and degree $p$ of the underlying spline space satisfy $1 \leq r \leq p-2$. The problem is that most complex geometries are not AS-$G^1$ geometries. Therefore, we define basis functions for isogeometric spaces by enforcing approximate $C^1$ conditions following the basis construction from (Kapl, Sangalli, Takacs; CAGD, 2017). For this reason, the defined function spaces are not exactly $C^1$ but only approximately. We study the convergence behavior and define function spaces that converge optimally under $h$-refinement, by locally introducing functions of higher polynomial degree and lower regularity. The convergence rate is optimal in several numerical tests performed on domains with non-trivial interfaces. While an extension to more general multi-patch domains is possible, we restrict ourselves to the two-patch case and focus on the construction over a single interface.

0
0
下载
预览

Let $n$ be the size of a parametrized problem and $k$ the parameter. We present a full kernel for Path Contraction and Cluster Editing/Deletion as well as a kernel for Feedback Vertex Set whose sizes are all polynomial in $k$, that are computable in polynomial time, and use $O(\rm{poly}(k) \log n)$ bits. By first executing the new kernelizations and subsequently the best known polynomial-time kernelizations for the problem under consideration, we obtain the best known kernels in polynomial time with $O(\rm{poly}(k) \log n)$ bits.

0
0
下载
预览

Recently, the authors have proposed and analyzed isogeometric tearing and interconnecting (IETI-DP) solvers for multi-patch discretizations in Isogeometric Analysis. Conforming and discontinuous Galerkin settings have been considered. In both cases, we have assumed that the interfaces between the patches consist of whole edges. In this paper, we present a generalization that allows us to drop this requirement. This means that the patches can meet in T-junctions, which increases the flexibility of the geometric model significantly. We use vertex-based primal degrees of freedom. For the T-junctions, we propose to follow the idea of "fat vertices".

0
0
下载
预览

Let $P$ be a set of $n$ points in $\mathbb{R}^2$. For a given positive integer $w<n$, our objective is to find a set $C \subset P$ of points, such that $CH(P\setminus C)$ has the smallest number of vertices and $C$ has at most $n-w$ points. We discuss the $O(wn^3)$ time dynamic programming algorithm for monotone decomposable functions (MDF) introduced for finding a class of optimal convex $w$-gons, with vertices chosen from $P$, and improve it to $O(n^3 \log w)$ time, which gives an improvement to the existing algorithm for MDFs if their input is a convex polygon.

0
0
下载
预览

We present a simple $O(n^4)$-time algorithm for computing optimal search trees with two-way comparisons. The only previous solution to this problem, by Anderson et al., has the same running time, but is significantly more complicated and is restricted to the variant where only successful queries are allowed. Our algorithm extends directly to solve the standard full variant of the problem, which also allows unsuccessful queries and for which no polynomial-time algorithm was previously known. The correctness proof of our algorithm relies on a new structural theorem for two-way-comparison search trees.

0
0
下载
预览

Within the context of stochastic probing with commitment, we consider the online stochastic matching problem; that is, the one-sided online bipartite matching problem where edges adjacent to an online node must be probed to determine if they exist based on edge probabilities that become known when an online vertex arrives. If a probed edge exists, it must be used in the matching (if possible). We consider the competitiveness of online algorithms in both the adversarial order model (AOM) and the random order model (ROM). More specifically, we consider a bipartite stochastic graph $G = (U,V,E)$ where $U$ is the set of offline vertices, $V$ is the set of online vertices and $G$ has edge probabilities $(p_{e})_{e \in E}$ and edge weights $(w_{e})_{e \in E}$. Additionally, $G$ has probing constraints $(\scr{C}_{v})_{v \in V}$, where $\scr{C}_v$ indicates which sequences of edges adjacent to an online vertex $v$ can be probed. We assume that $U$ is known in advance, and that $\scr{C}_v$, together with the edge probabilities and weights adjacent to an online vertex are only revealed when the online vertex arrives. This model generalizes the various settings of the classical bipartite matching problem, and so our main contribution is in making progress towards understanding which classical results extend to the stochastic probing model.

0
0
下载
预览

We study the maximum matching problem in the random-order semi-streaming setting. In this problem, the edges of an arbitrary $n$-vertex graph $G=(V, E)$ arrive in a stream one by one and in a random order. The goal is to have a single pass over the stream, use $n \cdot poly(\log n)$ space, and output a large matching of $G$. We prove that for an absolute constant $\epsilon_0 > 0$, one can find a $(2/3 + \epsilon_0)$-approximate maximum matching of $G$ using $O(n \log n)$ space with high probability. This breaks the natural boundary of $2/3$ for this problem prevalent in the prior work and resolves an open problem of Bernstein [ICALP'20] on whether a $(2/3 + \Omega(1))$-approximation is achievable.

0
0
下载
预览

Graph spanners and emulators are sparse structures that approximately preserve distances of the original graph. While there has been an extensive amount of work on additive spanners, so far little attention was given to weighted graphs. Only very recently [ABSKS20] extended the classical +2 (respectively, +4) spanners for unweighted graphs of size $O(n^{3/2})$ (resp., $O(n^{7/5})$) to the weighted setting, where the additive error is $+2W$ (resp., $+4W$). This means that for every pair $u,v$, the additive stretch is at most $+2W_{u,v}$, where $W_{u,v}$ is the maximal edge weight on the shortest $u-v$ path. In addition, [ABSKS20] showed an algorithm yielding a $+8W_{max}$ spanner of size $O(n^{4/3})$, here $W_{max}$ is the maximum edge weight in the entire graph. In this work we improve the latter result by devising a simple deterministic algorithm for a $+(6+\varepsilon)W$ spanner for weighted graphs with size $O(n^{4/3})$ (for any constant $\varepsilon>0$), thus nearly matching the classical +6 spanner of size $O(n^{4/3})$ for unweighted graphs. Furthermore, we show a $+(2+\varepsilon)W$ subsetwise spanner of size $O(n\cdot\sqrt{|S|})$, improving the $+4W_{max}$ result of [ABSKS20] (that had the same size). We also show a simple randomized algorithm for a $+4W$ emulator of size $\tilde{O}(n^{4/3})$. In addition, we show that our technique is applicable for very sparse additive spanners, that have linear size. For weighted graphs, we use a variant of our simple deterministic algorithm that yields a linear size $+\tilde{O}(\sqrt{n}\cdot W)$ spanner, and we also obtain a tradeoff between size and stretch. Finally, generalizing the technique of [DHZ00] for unweighted graphs, we devise an efficient randomized algorithm producing a $+2W$ spanner for weighted graphs of size $\tilde{O}(n^{3/2})$ in $\tilde{O}(n^2)$ time.

0
0
下载
预览
小贴士
相关论文
Charis Papadopoulos,Spyridon Tzimas
0+阅读 · 3月4日
Frank Kammer,Andrej Sajenko
0+阅读 · 3月4日
Towards a IETI-DP solver on non-matching multi-patch domains
Rainer Schneckenleitner,Stefan Takacs
0+阅读 · 3月3日
Vahideh Keikha
0+阅读 · 3月2日
Marek Chrobak,Mordecai Golin,J. Ian Munro,Neal E. Young
0+阅读 · 3月1日
Allan Borodin,Calum MacRury,Akash Rakheja
0+阅读 · 3月1日
Sepehr Assadi,Soheil Behnezhad
0+阅读 · 2月28日
Michael Elkin,Yuval Gitlitz,Ofer Neiman
0+阅读 · 2月28日
相关VIP内容
专知会员服务
39+阅读 · 2020年12月5日
专知会员服务
49+阅读 · 2020年9月8日
专知会员服务
32+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
45+阅读 · 2019年10月11日
Top