Federated learning (FL) is an appealing concept to perform distributed training of Neural Networks (NN) while keeping data private. With the industrialization of the FL framework, we identify several problems hampering its successful deployment, such as presence of non i.i.d data, disjoint classes, signal multi-modality across datasets. In this work, we address these problems by proposing a novel method that not only (1) aggregates generic model parameters (e.g. a common set of task generic NN layers) on server (e.g. in traditional FL), but also (2) keeps a set of parameters (e.g, a set of task specific NN layer) specific to each client. We validate our method on the traditionally used public benchmarks (e.g., Femnist) as well as on our proprietary collected dataset (i.e., traffic classification). Results show the benefit of our method, with significant advantage on extreme cases.
翻译:联邦学习(FL)是一个在保持数据私密的同时对神经网络进行分布式培训的颇具吸引力的概念。随着FL框架的工业化,我们发现了阻碍成功部署它的一些问题,例如存在非i.d数据、脱节分类、跨数据集的信号多式信号等。在这项工作中,我们提出一种新的方法来解决这些问题,不仅(1) 将服务器上的通用模型参数(如一套通用任务通用的NNN层次)汇总在一起(如传统FL中的一种通用任务),而且(2) 保留一套专门针对每个客户的参数(如一套任务专用的NNN层次)。我们验证了我们传统上使用的公共基准(如Femnist)和我们收集的专有数据集(即交通分类)的方法。结果显示了我们方法的好处,在极端情况下有很大优势。