In order to improve the vessel's capacity and ensure maritime traffic safety, vessel intelligent trajectory prediction plays an essential role in the vessel's smart navigation and intelligent collision avoidance system. However, current researchers only focus on short-term or long-term vessel trajectory prediction, which leads to insufficient accuracy of trajectory prediction and lack of in-depth mining of comprehensive historical trajectory data. This paper proposes an Automatic Identification System (AIS) data-driven long short-term memory (LSTM) method based on the fusion of the forward sub-network and the reverse sub-network (termed as FRA-LSTM) to predict the vessel trajectory. The forward sub-network in our method combines LSTM and attention mechanism to mine features of forward historical trajectory data. Simultaneously, the reverse sub-network combines bi-directional LSTM (BiLSTM) and attention mechanism to mine features of backward historical trajectory data. Finally, the final predicted trajectory is generated by fusing output features of the forward and reverse sub-network. Based on plenty of experiments, we prove that the accuracy of our proposed method in predicting short-term and mid-term trajectories has increased by 96.8% and 86.5% on average compared with the BiLSTM and Seq2seq. Furthermore, the average accuracy of our method is 90.1% higher than that of compared the BiLSTM and Seq2seq in predicting long-term trajectories.


翻译:为了提高船舶的容量和保障海上交通安全,船舶智能轨迹预测在船舶智能导航和智能避碰系统中起着至关重要的作用。然而,当前研究仅关注短期或长期船舶轨迹预测,导致轨迹预测的准确性不足,缺乏综合历史轨迹数据的深入挖掘。本文提出了一种基于自动识别系统(AIS)数据的长短时记忆(LSTM)方法,该方法基于正反子网络的融合(称为FRA-LSTM)来预测船舶轨迹。我们的正向子网络结合了LSTM和注意机制来挖掘正向历史轨迹数据的特征。同时,反向子网络结合了双向LSTM(BiLSTM)和注意机制来挖掘反向历史轨迹数据的特征。最后,通过融合正向和反向子网络的输出特征生成最终预测轨迹。基于大量实验,我们证明了我们提出的方法与BiLSTM和Seq2seq相比,在短期和中期轨迹预测方面的准确性平均提高了96.8%和86.5%。此外,在预测长期轨迹方面,我们的方法的平均准确性比BiLSTM和Seq2seq高90.1%。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员