Motivated by recent findings that within-subject (WS) visit-to-visit variabilities of longitudinal biomarkers can be strong risk factors for health outcomes, this paper introduces and examines a new joint model of a longitudinal biomarker with heterogeneous WS variability and competing risks time-to-event outcome. Specifically, our joint model consists of a linear mixed-effects multiple location-scale submodel for the individual mean trajectory and WS variability of the longitudinal biomarker and a semiparametric cause-specific Cox proportional hazards submodel for the competing risks survival outcome. The submodels are linked together via shared random effects. We derive an expectation-maximization algorithm for semiparametric maximum likelihood estimation and a profile-likelihood method for standard error estimation. We implement efficient computational algorithms that scales to biobank-scale data with tens of thousands of subjects. Our simulation results demonstrate that, in the presence of heterogeneous WS variability, the proposed method has superior performance for estimation, inference, and prediction, over the classical joint model with homogeneous WS variability. An application of our method to a Multi-Ethnic Study of Atherosclerosis (MESA) data reveals that there is substantial heterogeneity in systolic blood pressure (SBP) WS variability across MESA individuals and that SBP WS variability is an important predictor for heart failure and death, (independent of, or in addition to) the individual SBP mean level. Furthermore, by accounting for both the mean trajectory and WS variability of SBP, our method leads to a more accurate dynamic prediction model for heart failure or death. A user-friendly R package \textbf{JMH} is developed and publicly available at \url{https://github.com/shanpengli/JMH}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年6月20日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员