The rigidity of a matrix $A$ for target rank $r$ is the minimum number of entries of $A$ that need to be changed in order to obtain a matrix of rank at most $r$. At MFCS'77, Valiant introduced matrix rigidity as a tool to prove circuit lower bounds for linear functions and since then this notion received much attention and found applications in other areas of complexity theory. The problem of constructing an explicit family of matrices that are sufficiently rigid for Valiant's reduction (Valiant-rigid) still remains open. Moreover, since 2017 most of the long-studied candidates have been shown not to be Valiant-rigid. Some of those former candidates for rigidity are Kronecker products of small matrices. In a recent paper (STOC'21), Alman gave a general non-rigidity result for such matrices: he showed that if an $n\times n$ matrix $A$ (over any field) is a Kronecker product of $d\times d$ matrices $M_1,\dots, M_k$ (so $n=d^k$) $(d\ge 2)$ then changing only $n^{1+\varepsilon}$ entries of $A$ one can reduce its rank to $\le n^{1-\gamma}$, where $1/\gamma$ is roughly $2^d/\varepsilon^2$. In this note we improve this result in two directions. First, we do not require the matrices $M_i$ to have equal size. Second, we reduce $1/\gamma$ from exponential in $d$ to roughly $d^{3/2}/\varepsilon^2$ (where $d$ is the maximum size of the matrices $M_i$), and to nearly linear (roughly $d/\varepsilon^2$) for matrices $M_i$ of sizes within a constant factor of each other. As an application of our results we significantly expand the class of Hadamard matrices that are known not to be Valiant-rigid; these now include the Kronecker products of Paley-Hadamard matrices and Hadamard matrices of bounded size.


翻译:基质 $A$ 的僵硬度是用于目标的基质 美元 美元 美元 的最小值 。 此外, 自2017年以来, 需要修改的基量 $ 的最低值是 $2 美元 ; 在 MFCS'77 时, Valiant 引入基质的僵硬度, 以证明线性功能的电路下线线线线, 自此以后, 这个概念在其它复杂理论领域引起了很大的注意并找到了应用。 构建一个对于 Valiative 降价( Valit-rigid) 来说足够僵硬的基质 。 此外, 自2017年以来, 大部分长期研究的基量 美元 的基数不是 Val2 美元 ; 在最小化的基数中, 一些前的基数是 Kronecker 美元 。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
123+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月22日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
123+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员