We consider the propagation of acoustic waves in a 2D waveguide unbounded in one direction and containing a compact obstacle. The wavenumber is fixed so that only one mode can propagate. The goal of this work is to propose a method to cloak the obstacle. More precisely, we add to the geometry thin outer resonators of width $\varepsilon$ and we explain how to choose their positions as well as their lengths to get a transmission coefficient approximately equal to one as if there were no obstacle. In the process we also investigate several related problems. In particular, we explain how to get zero transmission and how to design phase shifters. The approach is based on asymptotic analysis in presence of thin resonators. An essential point is that we work around resonance lengths of the resonators. This allows us to obtain effects of order one with geometrical perturbations of width $\varepsilon$. Various numerical experiments illustrate the theory.


翻译:我们考虑将声波传播成2D波导,没有向一个方向,并包含一个紧凑的屏障。 波数是固定的,只有一种模式可以传播。 这项工作的目标是提出一个隐藏障碍的方法。 更准确地说, 我们增加宽度$\varepsilon的几何薄外部共振器, 我们解释如何选择其位置和长度, 以获得大约等于1的传输系数。 我们还调查了几个相关的问题。 特别是, 我们解释如何获得零传输, 以及如何设计相向转换器。 这种方法基于在薄共振器面前的无反应分析。 一个要点是, 我们围绕共振器的共振长度工作。 这使我们能够获得一个带有宽度$\varepsilon的几何干涉器的顺序效应。 各种数字实验可以说明这个理论。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
5+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月19日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
5+阅读 · 2018年11月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员