Concerns for the resilience of Cyber-Physical Systems (CPS)s in critical infrastructure are growing. CPS integrate sensing, computation, control, and networking into physical objects and mission-critical services, connecting traditional infrastructure to internet technologies. While this integration increases service efficiency, it has to face the possibility of new threats posed by the new functionalities. This leads to cyber-threats, such as denial-of-service, modification of data, information leakage, spreading of malware, and many others. Cyber-resilience refers to the ability of a CPS to prepare, absorb, recover, and adapt to the adverse effects associated with cyber-threats, e.g., physical degradation of the CPS performance resulting from a cyber-attack. Cyber-resilience aims at ensuring CPS survival by keeping the core functionalities of the CPS in case of extreme events. The literature on cyber-resilience is rapidly increasing, leading to a broad variety of research works addressing this new topic. In this article, we create a systematization of knowledge about existing scientific efforts of making CPSs cyber-resilient. We systematically survey recent literature addressing cyber-resilience with a focus on techniques that may be used on CPSs. We first provide preliminaries and background on CPSs and threats, and subsequently survey state-of-the-art approaches that have been proposed by recent research work applicable to CPSs. In particular, we aim at differentiating research work from traditional risk management approaches based on the general acceptance that it is unfeasible to prevent and mitigate all possible risks threatening a CPS. We also discuss questions and research challenges, with a focus on the practical aspects of cyber-resilience, such as the use of metrics and evaluation methods as well as testing and validation environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员