Linear mixed models are a versatile statistical tool to study data by accounting for fixed effects and random effects from multiple sources of variability. In many situations, a large number of candidate fixed effects is available and it is of interest to select a parsimonious subset of those being effectively relevant for predicting the response variable. Variational approximations facilitate fast approximate Bayesian inference for the parameters of a variety of statistical models, including linear mixed models. However, for models having a high number of fixed or random effects, simple application of standard variational inference principles does not lead to fast approximate inference algorithms, due to the size of model design matrices and inefficient treatment of sparse matrix problems arising from the required approximating density parameters updates. We illustrate how recently developed streamlined variational inference procedures can be generalized to make fast and accurate inference for the parameters of linear mixed models with nested random effects and global-local priors for Bayesian fixed effects selection. Our variational inference algorithms achieve convergence to the same optima of their standard implementations, although with significantly lower computational effort, memory usage and time, especially for large numbers of random effects. Using simulated and real data examples, we assess the quality of automated procedures for fixed effects selection that are free from hyperparameters tuning and only rely upon variational posterior approximations. Moreover, we show high accuracy of variational approximations against model fitting via Markov Chain Monte Carlo sampling.


翻译:线性混合模型是一个多用途统计工具,用于通过计算固定效应和来自多种变异来源的随机效应来研究数据;在许多情况下,由于模型设计矩阵规模小,对所需近似密度参数更新引起的分散的矩阵问题处理效率低,因此有大量可供选择的固定效应和来自多种变异来源的随机效应,有兴趣选择对预测响应变量具有有效相关性的偏差子组;变式近似有助于快速近似巴伊西亚对各种统计模型参数的推断,包括线性混合模型;但是,对于固定效应或随机效应较多的模型,简单应用标准变异推断原则不会导致快速近似推理算法,因为模型设计矩阵规模小,对所需近似密度密度参数更新引起的分散矩阵问题处理效率低;我们说明最近制定简化的变异性计算程序如何普遍化,以便快速准确地推导出具有巢性随机效应的线性混合模型参数,以及选择巴伊西固定效应模型的全球地方前科。 我们的变率算法不会导致其标准实施情况的一致,尽管其计算努力、记忆使用率和时间处理效率低得多的问题,特别是从我们测算结果的精确度模型的精确度模型上,我们只能评估。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
AAAI2020接受论文列表,1591篇论文目录全集
专知会员服务
98+阅读 · 2020年1月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年12月3日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员