Wildfires are becoming increasingly frequent and devastating, and therefore the technology to combat them must adapt accordingly. Modern predictive models have failed to balance predictive accuracy and operational viability, resulting in consistently delayed or misinformed fire suppression and public safety efforts. The present study addresses this gap by developing and validating a predictive model based on cellular automata (CA) that incorporates key environmental variables, including vegetation density (NDVI), wind speed and direction, and topographic slope derived from open-access datasets. The presented CA framework offers a lightweight alternative to data-heavy approaches that fail in emergency contexts. Evaluation of the model using a confusion matrix against burn scars from the 2025 Pacific Palisades Fire yielded a recall of 0.860, a precision of 0.605, and an overall F1 score of 0.711 after 50 parameter optimization trials, with each simulation taking an average of 1.22 seconds. CA-based models can bridge the gap between accuracy and applicability, successfully guiding public safety and fire suppression efforts.
翻译:暂无翻译