This paper addresses the problem of online learning in metric spaces using exponential weights. We extend the analysis of the exponentially weighted average forecaster, traditionally studied in a Euclidean settings, to a more abstract framework. Our results rely on the notion of barycenters, a suitable version of Jensen's inequality and a synthetic notion of lower curvature bound in metric spaces known as the measure contraction property. We also adapt the online-to-batch conversion principle to apply our results to a statistical learning framework.


翻译:本文用指数权重处理计量空间的在线学习问题。 我们对传统上在欧几里德环境下研究的指数加权平均预报器的分析扩大到一个更抽象的框架。 我们的结果依赖于巴里中心的概念、詹森不平等的合适版本和在被称为测量缩缩缩属性的计量空间内捆绑的低曲线的合成概念。 我们还调整了在线到批量转换原则,将我们的结果应用于统计学习框架。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员