We consider the standard population protocol model, where (a priori) indistinguishable and anonymous agents interact in pairs according to uniformly random scheduling. The self-stabilizing leader election problem requires the protocol to converge on a single leader agent from any possible initial configuration. We initiate the study of time complexity of population protocols solving this problem in its original setting: with probability 1, in a complete communication graph. The only previously known protocol by Cai, Izumi, and Wada [Theor. Comput. Syst. 50] runs in expected parallel time $\Theta(n^2)$ and has the optimal number of $n$ states in a population of $n$ agents. The existing protocol has the additional property that it becomes silent, i.e., the agents' states eventually stop changing. Observing that any silent protocol solving self-stabilizing leader election requires $\Omega(n)$ expected parallel time, we introduce a silent protocol that uses optimal $O(n)$ parallel time and states. Without any silence constraints, we show that it is possible to solve self-stabilizing leader election in asymptotically optimal expected parallel time of $O(\log n)$, but using at least exponential states (a quasi-polynomial number of bits). All of our protocols (and also that of Cai et al.) work by solving the more difficult ranking problem: assigning agents the ranks $1,\ldots,n$.
翻译:我们考虑标准的人口议定书模式,即(先验的)无法区分和匿名的代理人按照统一随机的时间安排进行对对等互动。自我稳定的领导人选举问题要求协议在任何可能的初始配置中汇集一个单一的领导代理人。我们开始研究解决该问题的人口议定书的时间复杂性,其原始设置是:概率1,在完整的通信图中。Cai、Izumi和Wada[Theor.Comput. Syst. 50]的唯一先前已知议定书在预期的平行时间 $Teta(n2) 美元(n2) 中运行,在以美元为单位的代理人中拥有最佳数目的一美元国家。现有的协议拥有它变得沉默的附加财产,即代理人最终停止变化。我们注意到任何解决自我稳定领导人选举的沉默议定书都需要美元(n)预期的平行时间,我们引入一个使用最优的美元(n)平行时间和州(n)的美元(n)的同步限制,我们表明有可能用最难的货币等级(美元)在最难的级别上解决领导人选举(也用最难的货币的货币)的等级(美元),在最难的级别上确定我们最难的货币的货币的等级(美元)选举。