The diffusion of rumors on microblogs generally follows a propagation tree structure, that provides valuable clues on how an original message is transmitted and responded by users over time. Recent studies reveal that rumor detection and stance detection are two different but relevant tasks which can jointly enhance each other, e.g., rumors can be debunked by cross-checking the stances conveyed by their relevant microblog posts, and stances are also conditioned on the nature of the rumor. However, most stance detection methods require enormous post-level stance labels for training, which are labor-intensive given a large number of posts. Enlightened by Multiple Instance Learning (MIL) scheme, we first represent the diffusion of claims with bottom-up and top-down trees, then propose two tree-structured weakly supervised frameworks to jointly classify rumors and stances, where only the bag-level labels concerning claim's veracity are needed. Specifically, we convert the multi-class problem into a multiple MIL-based binary classification problem where each binary model focuses on differentiating a target stance or rumor type and other types. Finally, we propose a hierarchical attention mechanism to aggregate the binary predictions, including (1) a bottom-up or top-down tree attention layer to aggregate binary stances into binary veracity; and (2) a discriminative attention layer to aggregate the binary class into finer-grained classes. Extensive experiments conducted on three Twitter-based datasets demonstrate promising performance of our model on both claim-level rumor detection and post-level stance classification compared with state-of-the-art methods.
翻译:微博客流言的传播一般遵循传播树结构,为原始信息如何传递并由用户在一段时间内做出回应提供了宝贵的线索。最近的研究显示,流言探测和姿态探测是两种不同但相关的任务,可以共同加强彼此,例如,流言可以通过交叉核对其相关微博客文章所传达的姿态来揭发,立场立场也取决于流言的性质。然而,大多数姿态检测方法需要大量的后级培训标签,由于大量文章,这是劳动密集型的。多级学习(MIL)计划启发了我们首先代表了自下而下和自上而下的树层的主张的传播,然后提出了两个树结构薄弱的监督框架,以联合对流言和立场进行分类,其中只需要关于索赔真实性的包级标签。具体地说,我们将多级问题转换成一个基于MIL的多级分类问题,其中每个二进制模型侧重于区分目标立场或流言类型和其他类型。最后,我们建议一个等级关注等级级级的检测机制,即分级级测试(Binalningal) 和分级后级(BOI) 级), 级,即展示了我们头、 级、 级、 级、 级、 级、 级、 底级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、