The diffusion of rumors on microblogs generally follows a propagation tree structure, that provides valuable clues on how an original message is transmitted and responded by users over time. Recent studies reveal that rumor detection and stance detection are two different but relevant tasks which can jointly enhance each other, e.g., rumors can be debunked by cross-checking the stances conveyed by their relevant microblog posts, and stances are also conditioned on the nature of the rumor. However, most stance detection methods require enormous post-level stance labels for training, which are labor-intensive given a large number of posts. Enlightened by Multiple Instance Learning (MIL) scheme, we first represent the diffusion of claims with bottom-up and top-down trees, then propose two tree-structured weakly supervised frameworks to jointly classify rumors and stances, where only the bag-level labels concerning claim's veracity are needed. Specifically, we convert the multi-class problem into a multiple MIL-based binary classification problem where each binary model focuses on differentiating a target stance or rumor type and other types. Finally, we propose a hierarchical attention mechanism to aggregate the binary predictions, including (1) a bottom-up or top-down tree attention layer to aggregate binary stances into binary veracity; and (2) a discriminative attention layer to aggregate the binary class into finer-grained classes. Extensive experiments conducted on three Twitter-based datasets demonstrate promising performance of our model on both claim-level rumor detection and post-level stance classification compared with state-of-the-art methods.


翻译:微博客流言的传播一般遵循传播树结构,为原始信息如何传递并由用户在一段时间内做出回应提供了宝贵的线索。最近的研究显示,流言探测和姿态探测是两种不同但相关的任务,可以共同加强彼此,例如,流言可以通过交叉核对其相关微博客文章所传达的姿态来揭发,立场立场也取决于流言的性质。然而,大多数姿态检测方法需要大量的后级培训标签,由于大量文章,这是劳动密集型的。多级学习(MIL)计划启发了我们首先代表了自下而下和自上而下的树层的主张的传播,然后提出了两个树结构薄弱的监督框架,以联合对流言和立场进行分类,其中只需要关于索赔真实性的包级标签。具体地说,我们将多级问题转换成一个基于MIL的多级分类问题,其中每个二进制模型侧重于区分目标立场或流言类型和其他类型。最后,我们建议一个等级关注等级级级的检测机制,即分级级测试(Binalningal) 和分级后级(BOI) 级), 级,即展示了我们头、 级、 级、 级、 级、 级、 级、 底级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、 级、

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
54+阅读 · 2020年11月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
54+阅读 · 2020年11月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员