We develop a novel data-driven approach to modeling the atmospheric boundary layer. This approach leads to a nonlocal, anisotropic synthetic turbulence model which we refer to as the deep rapid distortion (DRD) model. Our approach relies on an operator regression problem which characterizes the best fitting candidate in a general family of nonlocal covariance kernels parameterized in part by a neural network. This family of covariance kernels is expressed in Fourier space and is obtained from approximate solutions to the Navier--Stokes equations at very high Reynolds numbers. Each member of the family incorporates important physical properties such as mass conservation and a realistic energy cascade. The DRD model can be calibrated with noisy data from field experiments. After calibration, the model can be used to generate synthetic turbulent velocity fields. To this end, we provide a new numerical method based on domain decomposition which delivers scalable, memory-efficient turbulence generation with the DRD model as well as others. We demonstrate the robustness of our approach with both filtered and noisy data coming from the 1968 Air Force Cambridge Research Laboratory Kansas experiments. Using this data, we witness exceptional accuracy with the DRD model, especially when compared to the International Electrotechnical Commission standard.


翻译:我们开发了一种新型的数据驱动方法来模拟大气边界层。 这种方法导致一种非本地的、 异常的合成合成气流模型, 我们称之为深度快速扭曲( DRD) 模型。 我们的方法依赖于操作者回归问题, 它将非本地共变内核整体中最合适的候选者定性为由神经网络部分参数化的非本地共变内核。 这个共变内核的组合在 Fourier 空间中表现, 是从对导航- Stokes 方程式的近似解决方案中获得的, 以非常高的 Reynolds 数字表示。 每个家庭成员都包含重要的物理特性, 如质量保护和现实的能源级等。 DRD 模型可以用来自实地实验的噪音数据校准。 校准后, 该模型可用于生成合成的动荡速度字段。 为此, 我们提供了一个基于域分解定位的新的数字方法, 通过DRD模型和其他模型产生可缩缩放、记忆高效的波动。 我们用1968年空军剑桥研究实验室实验室的过滤和紧凑数据展示了我们的方法的稳健健性, 将这一数据与特殊的D- 技术实验室实验室实验室的精确性加以比较。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
41+阅读 · 2021年4月2日
注意力机制综述
专知会员服务
80+阅读 · 2021年1月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
158+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
注意力机制综述
专知会员服务
80+阅读 · 2021年1月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
158+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员