Unsupervised learning algorithms (e.g., self-supervised learning, auto-encoder, contrastive learning) allow deep learning models to learn effective image representations from large-scale unlabeled data. In medical image analysis, even unannotated data can be difficult to obtain for individual labs. Fortunately, national-level efforts have been made to provide efficient access to obtain biomedical image data from previous scientific publications. For instance, NIH has launched the Open-i search engine that provides a large-scale image database with free access. However, the images in scientific publications consist of a considerable amount of compound figures with subplots. To extract and curate individual subplots, many different compound figure separation approaches have been developed, especially with the recent advances in deep learning. However, previous approaches typically required resource extensive bounding box annotation to train detection models. In this paper, we propose a simple compound figure separation (SimCFS) framework that uses weak classification annotations from individual images. Our technical contribution is three-fold: (1) we introduce a new side loss that is designed for compound figure separation; (2) we introduce an intra-class image augmentation method to simulate hard cases; (3) the proposed framework enables an efficient deployment to new classes of images, without requiring resource extensive bounding box annotations. From the results, the SimCFS achieved a new state-of-the-art performance on the ImageCLEF 2016 Compound Figure Separation Database. The source code of SimCFS is made publicly available at https://github.com/hrlblab/ImageSeperation.


翻译:不受监督的学习算法(例如,自我监督的学习、自动编码、对比式学习)使得深层次学习模式能够从大型无标签数据中学习到有效的图像显示。在医学图像分析中,即使没有附加说明的数据也很难为单个实验室获得。幸运的是,国家一级努力提供高效率的接入,从以前的科学出版物中获取生物医学图像数据。例如,NIH启动了开放搜索引擎,为个人图像提供了大范围的图像数据库。然而,科学出版物中的图像包含大量带有子笔的复合数字。为了提取和整理单个子笔,已经开发了许多不同的复合图解分离方法,特别是最近深层次学习的进展。然而,以往的方法通常需要资源广泛的捆绑框,以培训检测模型。在本文件中,我们提议一个简单的复合图分离框架,使用个人图像的薄弱分类说明。我们的技术贡献有三重:(1) 我们引入了用于复合图解的新的侧损失;(2) 我们从内部的分类/ C型图像分类,我们引入了一种不要求内部的直径图像分析的硬度图像分析模型。我们引入了一种内部的硬度的硬度的图像分析模型分析方法。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
38+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
9+阅读 · 2018年5月22日
VIP会员
Top
微信扫码咨询专知VIP会员