Temporal knowledge graph, serving as an effective way to store and model dynamic relations, shows promising prospects in event forecasting. However, most temporal knowledge graph reasoning methods are highly dependent on the recurrence or periodicity of events, which brings challenges to inferring future events related to entities that lack historical interaction. In fact, the current moment is often the combined effect of a small part of historical information and those unobserved underlying factors. To this end, we propose a new event forecasting model called Contrastive Event Network (CENET), based on a novel training framework of historical contrastive learning. CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query. Simultaneously, it trains representations of queries to investigate whether the current moment depends more on historical or non-historical events by launching contrastive learning. The representations further help train a binary classifier whose output is a boolean mask to indicate related entities in the search space. During the inference process, CENET employs a mask-based strategy to generate the final results. We evaluate our proposed model on five benchmark graphs. The results demonstrate that CENET significantly outperforms all existing methods in most metrics, achieving at least $8.3\%$ relative improvement of Hits@1 over previous state-of-the-art baselines on event-based datasets.


翻译:时间知识图是储存和模拟动态关系的有效方法,显示了在事件预测方面的前景;然而,大多数时间知识图推理方法都高度依赖事件反复发生或周期性,从而对预测与缺乏历史互动的实体有关的今后事件提出了挑战;事实上,当前往往是历史信息一小部分和那些没有观察到的基本因素的综合影响;为此,我们提议了一个新的事件预测模型,称为竞争事件网络(CENET),以历史对比学习的新培训框架为基础;CENET学习历史和非历史依赖性,以区分最有可能与既定查询最匹配的实体。与此同时,它通过启动对比性学习,对调查当前是否更多依赖历史或非历史事件进行陈述,以调查当前是否更依赖历史或非历史事件。该演示还有助于训练一个二进制分类器,其输出为布林面遮罩,以显示搜索空间中的有关实体。在推断过程中,CENET采用基于面具的战略产生最终结果。我们在五个基准图表上评估了我们提议的模型,以最符合既定要求的实体。同时,通过启动对比式的CNET3 最新数据基线,结果显示在最远高于现有标准的所有CNENEET标准。

7
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
99+阅读 · 2020年3月4日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员