In modern data science problems, techniques for extracting value from big data require performing large-scale optimization over heterogenous, irregularly structured data. Much of this data is best represented as multi-relational graphs, making vertex programming abstractions such as those of Pregel and GraphLab ideal fits for modern large-scale data analysis. In this paper, we describe a vertex-programming implementation of a popular consensus optimization technique known as the alternating direction of multipliers (ADMM). ADMM consensus optimization allows elegant solution of complex objectives such as inference in rich probabilistic models. We also introduce a novel hypergraph partitioning technique that improves over state-of-the-art partitioning techniques for vertex programming and significantly reduces the communication cost by reducing the number of replicated nodes up to an order of magnitude. We implemented our algorithm in GraphLab and measure scaling performance on a variety of realistic bipartite graph distributions and a large synthetic voter-opinion analysis application. In our experiments, we are able to achieve a 50% improvement in runtime over the current state-of-the-art GraphLab partitioning scheme.


翻译:在现代数据科学问题中,从大数据中提取价值的技术要求对异质、非正常结构化的数据进行大规模优化。这些数据中,大部分数据最能体现为多关系图,使脊椎编程抽取,如Pregel和GreaphLab理想模型,适合现代大规模数据分析。在本文中,我们描述了流行的共识优化技术的顶点编程应用,称为乘数交替方向(ADMMM)。ADMM共识优化允许优雅地解决复杂目标,如富富饶概率模型的推断。我们还采用了一种新的高射分流技术,通过将复制的节点数量减少到一定规模,改进了顶端编程技术,大大减少了通信成本。我们在GregLab中应用了我们的算法,并测量了各种现实的双部分图分布和大规模合成选民-视觉分析应用的绩效。在我们的实验中,我们能够在目前状态的图形-图表分区分割计划期间实现50%的改进。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
58+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
58+阅读 · 2019年12月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员