Fast development in science and technology has driven the need for proper statistical tools to capture special data features such as abrupt changes or sharp contrast. Many inverse problems in data science require spatiotemporal solutions derived from a sequence of time-dependent objects with these spatial features, e.g., the dynamic reconstruction of computerized tomography (CT) images with edges. Conventional methods based on Gaussian processes (GP) often fall short in providing satisfactory solutions since they tend to offer oversmooth priors. Recently, the Besov process (BP), defined by wavelet expansions with random coefficients, has emerged as a more suitable prior for Bayesian inverse problems of this nature. While BP excels in handling spatial inhomogeneity, it does not automatically incorporate temporal correlation inherited in the dynamically changing objects. In this paper, we generalize BP to a novel spatiotemporal Besov process (STBP) by replacing the random coefficients in the series expansion with stochastic time functions as Q-exponential process (Q-EP) which governs the temporal correlation structure. We thoroughly investigate the mathematical and statistical properties of STBP. Simulations, two limited-angle CT reconstruction examples, a highly non-linear inverse problem involving Navier-Stokes equation, and a spatiotemporal temperature imputation problem are used to demonstrate the advantage of the proposed STBP compared with the classic STGP and a time-uncorrelated approach.
翻译:科学与技术的快速发展推动了对能够捕捉特殊数据特征(如突变或尖锐对比)的统计工具的需求。数据科学中的许多逆问题需要从具有此类空间特征的时变对象序列中推导出时空解,例如具有边缘特征的计算机断层扫描(CT)图像动态重建。基于高斯过程(GP)的传统方法往往无法提供令人满意的解,因为它们倾向于提供过度平滑的先验。近年来,由具有随机系数的小波展开定义的贝索夫过程(BP)已成为处理此类贝叶斯逆问题的更合适先验。虽然BP在处理空间非均匀性方面表现出色,但它并未自动包含动态变化对象中固有的时间相关性。本文通过将级数展开中的随机系数替换为控制时间相关结构的随机时间函数(即Q指数过程(Q-EP)),将BP推广为一种新颖的时空贝索夫过程(STBP)。我们深入研究了STBP的数学和统计特性。通过仿真实验、两个有限角度CT重建示例、一个涉及Navier-Stokes方程的高度非线性逆问题以及一个时空温度插补问题,证明了所提出的STBP相较于经典STGP和无时间相关方法的优势。