With Reinforcement Learning (RL) for inventory management (IM) being a nascent field of research, approaches tend to be limited to simple, linear environments with implementations that are minor modifications of off-the-shelf RL algorithms. Scaling these simplistic environments to a real-world supply chain comes with a few challenges such as: minimizing the computational requirements of the environment, specifying agent configurations that are representative of dynamics at real world stores and warehouses, and specifying a reward framework that encourages desirable behavior across the whole supply chain. In this work, we present a system with a custom GPU-parallelized environment that consists of one warehouse and multiple stores, a novel architecture for agent-environment dynamics incorporating enhanced state and action spaces, and a shared reward specification that seeks to optimize for a large retailer's supply chain needs. Each vertex in the supply chain graph is an independent agent that, based on its own inventory, able to place replenishment orders to the vertex upstream. The warehouse agent, aside from placing orders from the supplier, has the special property of also being able to constrain replenishment to stores downstream, which results in it learning an additional allocation sub-policy. We achieve a system that outperforms standard inventory control policies such as a base-stock policy and other RL-based specifications for 1 product, and lay out a future direction of work for multiple products.


翻译:随着强化学习在库存管理领域的应用仍处于起步阶段,现有方法往往局限于简单、线性环境,并且实现上只是基于通用的强化学习算法进行一些微小修改。把这些简单的环境扩展到实际的供应链中会遇到一些挑战,例如:最小化环境计算要求、指定能够代表实际商店和仓库动态的代理配置,以及指定一个奖励框架,以鼓励整个供应链具有期望的行为。在本研究中,我们提出了一个具有自定义GPU并行环境的系统,该环境包括一个仓库和多个商店,一个新颖的代理和环境动态架构,包括增强的状态和行为空间,分享奖励说明旨在优化大型零售商的供应链需求。供应链图中的每个顶点都是独立的代理,根据其自身的库存,能够向上游顶点下达补货订单。除了向供应商下订单外,仓库代理还具有将补货限制在下游商店的特殊属性,这导致它学习一种附加的分配子策略。我们实现了一个优于标准库存控制策略(例如基础库存策略和其他基于强化学习的策略)的系统,适用于1种产品,同时给出了多种产品的未来研究方向。

0
下载
关闭预览

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
18+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
64+阅读 · 2022年4月13日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
18+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员