Sionna is a GPU-accelerated open-source library for link-level simulations based on TensorFlow. Its latest release (v0.14) integrates a differentiable ray tracer (RT) for the simulation of radio wave propagation. This unique feature allows for the computation of gradients of the channel impulse response and other related quantities with respect to many system and environment parameters, such as material properties, antenna patterns, array geometries, as well as transmitter and receiver orientations and positions. In this paper, we outline the key components of Sionna RT and showcase example applications such as learning radio materials and optimizing transmitter orientations by gradient descent. While classic ray tracing is a crucial tool for 6G research topics like reconfigurable intelligent surfaces, integrated sensing and communications, as well as user localization, differentiable ray tracing is a key enabler for many novel and exciting research directions, for example, digital twins.
翻译:Sionna是一个基于TensorFlow的GPU加速开源库,用于链路级仿真。其最新版本(v0.14)集成了一种不同iable的光线追踪器(RT),用于模拟无线电波传播。这一独特的功能可以计算与许多系统和环境参数(例如材料属性,天线图案,阵列几何,以及发射机和接收机的方向和位置)相关的信道脉冲响应及其他相关量的梯度。在本文中,我们概述了Sionna RT的主要组件,并展示了示例应用程序,例如通过梯度下降学习无线电材料和优化发射机方向。虽然传统的光线追踪对于6G研究主题(如可重构智能表面,集成感知和通信以及用户定位)是至关重要的工具,但可微分光线追踪是许多新颖和令人兴奋的研究方向的关键因素,例如数字孪生。