We consider the problem of counting $k$-cliques in $s$-uniform Erdos-Renyi hypergraphs $G(n,c,s)$ with edge density $c$, and show that its fine-grained average-case complexity can be based on its worst-case complexity. We prove the following: 1. Dense Erdos-Renyi graphs and hypergraphs: Counting $k$-cliques on $G(n,c,s)$ with $k$ and $c$ constant matches its worst-case time complexity up to a $\mathrm{polylog}(n)$ factor. Assuming randomized ETH, it takes $n^{\Omega(k)}$ time to count $k$-cliques in $G(n,c,s)$ if $k$ and $c$ are constant. 2. Sparse Erdos-Renyi graphs and hypergraphs: When $c = \Theta(n^{-\alpha})$, we give several algorithms exploiting the sparsity of $G(n, c, s)$ that are faster than the best known worst-case algorithms. Complementing this, based on a fine-grained worst-case assumption, our results imply a different average-case phase diagram for each fixed $\alpha$ depicting a tradeoff between a runtime lower bound and $k$. Surprisingly, in the hypergraph case ($s \ge 3$), these lower bounds are tight against our algorithms exactly when $c$ is above the Erd\H{o}s-R\'{e}nyi $k$-clique percolation threshold. This is the first worst-case-to-average-case hardness reduction for a problem on Erd\H{o}s-R\'{e}nyi hypergraphs that we are aware of. We also give a variant of our result for computing the parity of the $k$-clique count that tolerates higher error probability.


翻译:我们考虑的是以美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=瑞郎=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
73+阅读 · 2020年12月27日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
82+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
已删除
将门创投
3+阅读 · 2019年9月4日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
0+阅读 · 2021年8月6日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年9月4日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Top
微信扫码咨询专知VIP会员