Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity (wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the number of vertices required to decompose a graph into fragments, but also take into account the size of the largest remaining component. The main focus of our paper is on kernelization algorithms tailored to both measures. We capitalize on the structural attributes inherent in different crown decompositions, strategically combining them to introduce novel kernelization algorithms that advance the current state of the field. In particular, we extend the scope of the balanced crown decomposition provided by Casel et al.~[7] and expand the applicability of crown decomposition techniques. In summary, we improve the vertex kernel of VI from $p^3$ to $p^2$, and of wVI from $p^3$ to $3(p^2 + p^{1.5} p_{\ell})$, where $p_{\ell} < p$ represents the weight of the heaviest component after removing a solution. For wCOC we improve the vertex kernel from $\mathcal{O}(k^2W + kW^2)$ to $3\mu(k + \sqrt{\mu}W)$, where $\mu = \max(k,W)$. We also give a combinatorial algorithm that provides a $2kW$ vertex kernel in FPT-runtime when parameterized by $r$, where $r \leq k$ is the size of a maximum $(W+1)$-packing. We further show that the algorithm computing the $2kW$ vertex kernel for COC can be transformed into a polynomial algorithm for two special cases, namely when $W=1$, which corresponds to the well-known vertex cover problem, and for claw-free graphs. In particular, we show a new way to obtain a $2k$ vertex kernel (or to obtain a 2-approximation) for the vertex cover problem by only using crown structures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
11+阅读 · 2018年5月21日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员