In the Maximum Minimal Vertex Cover (MMVC) problem, we are given a graph $G$ and a positive integer $k$, and the objective is to decide whether $G$ contains a minimal vertex cover of size at least $k$. Motivated by the kernelization of MMVC with parameter $k$, our main contribution is to introduce a simple general framework to obtain kernelization lower bounds for a certain type of kernels for optimization problems, which we call lop-kernels. Informally, this type of kernels is required to preserve large optimal solutions in the reduced instance, and captures the vast majority of existing kernels in the literature. As a consequence of this framework, we show that the trivial quadratic kernel for MMVC is essentially optimal, answering a question of Boria et al. [Discret. Appl. Math. 2015], and that the known cubic kernel for Maximum Minimal Feedback Vertex Set is also essentially optimal. We present further applications for Tree Deletion Set and for Maximum Independent Set on $K_t$-free graphs. Back to the MMVC problem, given the (plausible) non-existence of subquadratic kernels for MMVC on general graphs, we provide subquadratic kernels on $H$-free graphs for several graphs $H$, such as the bull, the paw, or the complete graphs, by making use of the Erd\"os-Hajnal property. Finally, we prove that MMVC does not admit polynomial kernels parameterized by the size of a minimum vertex cover of the input graph, even on bipartite graphs, unless ${\sf NP} \subseteq {\sf coNP} / {\sf poly}$.


翻译:在最大螺旋覆盖( MMVC ) 问题中, 我们被给出了一个图形 $G$ 和正整数 $K$, 目标是决定$G$是否包含一个最小的顶层覆盖率至少为$k$。 受 MMVC 以参数 $k$ 内核的驱动, 我们的主要贡献是引入一个简单的一般性框架, 以获得某种优化问题的内核下限, 我们称之为液态内核。 非正式地说, 需要这种类型的内核来保存减少的大型最佳解决方案, 并且要捕捉文献中绝大多数现有的顶层。 由于这个框架, 我们显示 MMVC 的微量四角内核内核基本是最佳的, 回答 Boria 和 Al. [ Discret. appl. Math.] 的问题, 已知的用于最大平面内核内核内核内核内核内核内核的内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 。 我们内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
70+阅读 · 2020年5月5日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
十个最流行的前端CSS库
前端之巅
5+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月17日
VIP会员
相关资讯
十个最流行的前端CSS库
前端之巅
5+阅读 · 2019年9月3日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员