Despite recent advances in implicit neural representations (INRs), it remains challenging for a coordinate-based multi-layer perceptron (MLP) of INRs to learn a common representation across data instances and generalize it for unseen instances. In this work, we introduce a simple yet effective framework for generalizable INRs that enables a coordinate-based MLP to represent complex data instances by modulating only a small set of weights in an early MLP layer as an instance pattern composer; the remaining MLP weights learn pattern composition rules for common representations across instances. Our generalizable INR framework is fully compatible with existing meta-learning and hypernetworks in learning to predict the modulated weight for unseen instances. Extensive experiments demonstrate that our method achieves high performance on a wide range of domains such as an audio, image, and 3D object, while the ablation study validates our weight modulation.
翻译:尽管最近隐式神经表示(INR)的进展,但对于基于坐标的多层感知器(MLP)的INR来说,学习跨数据实例的共同表示并将其推广到未见过的实例仍然具有挑战性。在本文中,我们引入了一种简单而又有效的通用INR框架,它使得基于坐标的MLP能够通过调制早期MLP层的一小部分权重作为实例模式组合器来表示复杂的数据实例,而其余的MLP权重则学习跨实例共同表示的模式组合规则。我们的通用INR框架完全兼容现有的元学习和超网络,可以学习预测未见实例的调制权重。广泛的实验证明了我们的方法在音频、图像和3D对象等各种领域都取得了高性能,而消融研究也验证了我们的权重调制。