We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Thereby we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both {\sc Partition} and {\sc Independent Set}. In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We can show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).


翻译:我们考虑将不可分割的项目公平分配给多个代理商, 并给这个古典问题添加一个图表理论角度。 因此, 我们引入了冲突图中描述的对等项目之间的不兼容关系。 分配给一个代理商的每组项目都必须在本图中形成独立的设置。 因此, 分配给代理商的项目分配与冲突图的部分颜色相对应。 每个代理商都有其自身的利润价值。 为了公平分配, 我们的目标是最大限度地增加分配给任何一个代理商的物品的最低总利润。 由此产生的优化问题包含特殊案例, 包括作为特例的 ~sc 分割 } 和 ~sc 独立设置 。 在我们的贡献中, 我们根据给定图的特性来得出复杂性和算法结果。 我们可以表明, 问题对于两边图及其线图来说, 问题非常严重, 而对于圆形图、 相容图、 相容图、 双convex 双部分图以及绑定的树际图 。 每一个多面面图也成为了完全的模型。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
0+阅读 · 2021年3月17日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员