机器学习简明指南,不可错过!

A Machine Learning Primer

亚马逊研究科学家Mihail Eric关于机器学习实践重要经验。包括监督学习、机器学习实践、无监督学习以及深度学习。具体为:

监督学习

  • 线性回归
  • 逻辑回归
  • 朴素贝叶斯
  • 支持向量机
  • 决策树
  • K-近邻

机器学习实践

  • 偏差-方差权衡
  • 如何选择模型
  • 如何选择特征
  • 正则化你的模型
  • 模型集成
  • 评价指标

无监督学习

  • 市场篮子分析
  • K均值聚类
  • 主成分分析

深度学习

  • 前向神经网络
  • 神经网络实践
  • 卷积神经网络
  • 循环神经网络
成为VIP会员查看完整内容
0
63

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

自然语言处理(NLP)为解决人工智能方面的问题提供了无限的机会,使Amazon Alexa和谷歌翻译等产品成为可能。如果您是NLP和深度学习的新手,那么本实用指南将向您展示如何使用PyTorch(一个基于python的深度学习库)应用这些方法。

作者Delip Rao和Brian McMahon为您提供了关于NLP和深度学习算法的坚实基础,并演示了如何使用PyTorch构建应用程序,其中包含针对您所面临问题的文本的丰富表示。每一章包括几个代码示例和插图。

  • 探索计算图表和监督学习范式
  • 掌握PyTorch优化张量操作库的基础知识
  • 对传统的NLP概念和方法进行概述
  • 学习建立神经网络的基本概念
  • 使用嵌入来表示单词、句子、文档和其他特性
  • 探索序列预测并生成序列对序列模型
  • 学习构建生产NLP系统的设计模式

https://www.oreilly.com/library/view/natural-language-processing/9781491978221/

成为VIP会员查看完整内容
0
83

通过使用Python开发用例,全面了解监督学习算法您将学习监督学习概念、Python代码、数据集、最佳实践、常见问题和缺陷的解决方案,以及实现结构化、文本和图像数据集算法的实践知识。

你将从介绍机器学习开始,强调监督学习、半监督学习和非监督学习之间的区别。在接下来的章节中,你将学习回归和分类问题,它们背后的数学,像线性回归、逻辑回归、决策树、KNN、朴素贝叶斯等算法,以及像随机森林、支持向量机、梯度增强和神经网络等高级算法。提供了所有算法的Python实现。最后,您将得到一个端到端模型开发流程,包括模型的部署和维护。在阅读了Python的监督学习之后,你将会对监督学习和它的实际实现有一个广泛的理解,并且能够以一种创新的方式运行代码和扩展它。

你将学习:

  • 回顾使用Python进行监督学习的基本构建块和概念
  • 为结构化数据以及文本和图像开发监督学习解决方案
  • 解决围绕过拟合、特征工程、数据清理和建立最佳拟合模型的交叉验证的问题
  • 理解从业务问题定义到模型部署和模型维护的端到端模型周期
  • 在使用Python创建监督学习模型时,避免常见的缺陷并遵循最佳实践

这本书是给谁的

  • 对监督学习的最佳实践和标准感兴趣,并使用分类算法和回归技术来开发预测模型的数据科学家或数据分析师。

https://www.apress.com/gp/book/9781484261552

成为VIP会员查看完整内容
0
44

本书基于易于理解且具有数据科学相关的丰富的库的Python语言环境,从零开始讲解数据科学工作。具体内容包括:Python速成,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法,等等。作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,详细展示了什么是数据科学。

介绍数据科学基本知识的重量级读本,Google数据科学家作品。

数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。

作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。

  • 简单介绍Python
  • 回顾一下线性几何、统计和概率知识,了解搞数据科学的时候怎么使用它们
  • 收集、探索、清理、转换和操作数据
  • 了解机器学习的基本知识
  • 实现K近邻、朴素贝叶斯、线性及逻辑回归、决策树、神经网络及聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce,还有数据库
成为VIP会员查看完整内容
0
46

管理统计和数据科学的原理包括:数据可视化;描述性措施;概率;概率分布;数学期望;置信区间;和假设检验。方差分析;简单线性回归;多元线性回归也包括在内。另外,本书还提供了列联表、卡方检验、非参数方法和时间序列方法。

教材:

  • 包括通常在入门统计学课程中涵盖的学术材料,但与数据科学扭曲,较少强调理论
  • 依靠Minitab来展示如何用计算机执行任务
  • 展示并促进来自开放门户的数据的使用
  • 重点是发展对程序如何工作的直觉
  • 让读者了解大数据的潜力和目前使用它的失败之处
成为VIP会员查看完整内容
1
109

这本教科书通过提供实用的建议,使用直接的例子,并提供相关应用的引人入胜的讨论,以一种容易理解的方式介绍了基本的机器学习概念。主要的主题包括贝叶斯分类器,最近邻分类器,线性和多项式分类器,决策树,神经网络,和支持向量机。后面的章节展示了如何通过“推进”的方式结合这些简单的工具,如何在更复杂的领域中利用它们,以及如何处理各种高级的实际问题。有一章专门介绍流行的遗传算法。

这个修订的版本包含关于工业中机器学习的实用应用的关键主题的三个全新的章节。这些章节研究了多标签域,无监督学习和它在深度学习中的使用,以及归纳逻辑编程的逻辑方法。许多章节已经被扩展,并且材料的呈现已经被增强。这本书包含了许多新的练习,许多解决的例子,深入的实验,和独立工作的计算机作业。

https://link.springer.com/book/10.1007/978-3-319-63913-0#about

成为VIP会员查看完整内容
0
154

机器学习已经成为许多商业应用和研究项目中不可或缺的一部分,但这一领域并不仅限于拥有广泛研究团队的大公司。如果您使用Python,即使是初学者,这本书也会教你构建自己的机器学习解决方案的实用方法。今天,有了所有可用的数据,机器学习应用程序只受限于你的想象力。

您将学习使用Python和scikit-learn库创建成功的机器学习应用程序所需的步骤。两位作者安德烈亚斯•穆勒(Andreas Muller)和萨拉•圭多(Sarah Guido)关注的是使用机器学习算法的实践层面,而不是背后的数学。熟悉NumPy和matplotlib库将有助于您从本书获得更多信息。

通过这本书,你会学到 :

  • 机器学习的基本概念和应用
  • 广泛应用的机器学习算法的优缺点
  • 如何表示机器学习处理过的数据,包括关注哪些数据方面
  • 先进的模型评估和参数调整方法
  • 用于链接模型和封装工作流的管道概念
  • 处理文本数据的方法,包括特定于文本的处理技术
  • 提高机器学习和数据科学技能的建议
成为VIP会员查看完整内容
0
100

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
156

本书概述了现代数据科学重要的数学和数值基础。特别是,它涵盖了信号和图像处理(傅立叶、小波及其在去噪和压缩方面的应用)、成像科学(反问题、稀疏性、压缩感知)和机器学习(线性回归、逻辑分类、深度学习)的基础知识。重点是对方法学工具(特别是线性算子、非线性逼近、凸优化、最优传输)的数学上合理的阐述,以及如何将它们映射到高效的计算算法。

https://mathematical-tours.github.io/book/

它应该作为数据科学的数字导览的数学伴侣,它展示了Matlab/Python/Julia/R对这里所涵盖的所有概念的详细实现。

成为VIP会员查看完整内容
0
227

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
230

这本书在对算法工作原理的高层次理解和对优化模型的具体细节的了解之间找到一个平衡点。这本书将给你的信心和技能时,开发所有主要的机器学习模型。在这本Pro机器学习算法中,您将首先在Excel中开发算法,以便在用Python/R实现模型之前,实际了解可以在模型中调优的所有细节。

你将涵盖所有主要的算法:监督和非监督学习,其中包括线性/逻辑回归;k - means聚类;主成分分析;推荐系统;决策树;随机森林;“GBM”;和神经网络。您还将通过CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度学习。你不仅要学习算法,还要学习特征工程的概念来最大化模型的性能。您将看到该理论与案例研究,如情绪分类,欺诈检测,推荐系统,和图像识别,以便您得到最佳的理论和实践为工业中使用的绝大多数机器学习算法。在学习算法的同时,您还将接触到在所有主要云服务提供商上运行的机器学习模型。

你会学到什么?

  • 深入了解所有主要的机器学习和深度学习算法
  • 充分理解在构建模型时要避免的陷阱
  • 在云中实现机器学习算法
  • 通过对每种算法的案例研究,采用动手实践的方法
  • 学习集成学习的技巧,建立更精确的模型
  • 了解R/Python编程的基础知识和Keras深度学习框架

这本书是给谁看的

希望转换到数据科学角色的业务分析师/ IT专业人员。想要巩固机器学习知识的数据科学家。

成为VIP会员查看完整内容
0
132
小贴士
相关VIP内容
专知会员服务
83+阅读 · 2020年10月30日
专知会员服务
46+阅读 · 2020年9月20日
专知会员服务
109+阅读 · 2020年7月29日
【干货书】《机器学习导论(第二版)》,348页pdf
专知会员服务
154+阅读 · 2020年6月16日
专知会员服务
100+阅读 · 2020年6月4日
专知会员服务
156+阅读 · 2020年6月3日
专知会员服务
227+阅读 · 2020年3月23日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
230+阅读 · 2020年3月17日
专知会员服务
132+阅读 · 2020年2月11日
相关论文
Do RNN and LSTM have Long Memory?
Jingyu Zhao,Feiqing Huang,Jia Lv,Yanjie Duan,Zhen Qin,Guodong Li,Guangjian Tian
16+阅读 · 2020年6月10日
Commonsense Knowledge Base Completion with Structural and Semantic Context
Chaitanya Malaviya,Chandra Bhagavatula,Antoine Bosselut,Yejin Choi
15+阅读 · 2019年12月19日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
The Theory behind Controllable Expressive Speech Synthesis: a Cross-disciplinary Approach
Noé Tits,Kevin El Haddad,Thierry Dutoit
3+阅读 · 2019年10月14日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
11+阅读 · 2019年6月25日
Tianyi Liu,Shiyang Li,Jianping Shi,Enlu Zhou,Tuo Zhao
3+阅读 · 2018年10月1日
Ali Javidani,Ahmad Mahmoudi-Aznaveh
4+阅读 · 2018年3月14日
Yan Huang,Jinsong Xu,Qiang Wu,Zhedong Zheng,Zhaoxiang Zhang,Jian Zhang
11+阅读 · 2018年1月29日
Aidan N. Gomez,Sicong Huang,Ivan Zhang,Bryan M. Li,Muhammad Osama,Lukasz Kaiser
11+阅读 · 2018年1月15日
Kaisheng Yao,Trevor Cohn,Katerina Vylomova,Kevin Duh,Chris Dyer
4+阅读 · 2015年8月25日
Top