了解深度学习,不同模型的细微差别,以及这些模型可以应用的地方。

丰富的数据和对优质产品/服务的需求,推动了先进的计算机科学技术的发展,其中包括图像和语音识别。通过机器学习和深度学习建立在数据科学的基础上,《使用R进行深度学习的介绍》提供了对执行这些任务的模型的理论和实践理解。这个分步指南将帮助您理解这些规程,以便您可以在各种上下文中应用该方法。所有的例子都是用R统计语言教授的,允许学生和专业人员使用开源工具来实现这些技术。

你将学习 理解支持深度学习模型的直觉和数学 利用各种算法使用R编程语言和它的包 使用最佳实践进行实验设计和变量选择 作为一个数据科学家,实践方法来接近和有效地解决问题 评估算法解决方案的有效性并增强其预测能力

这本书是给谁的

熟悉使用R编程的学生、研究人员和数据科学家也可以使用这本书来学习如何在最有用的应用程序中适当地部署这些算法。

成为VIP会员查看完整内容
0
24

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

通过技术例子从业务角度发现深度学习的潜在应用、挑战和机会。这些应用包括图像识别、分割和注释、视频处理和注释、语音识别、智能个人助理、自动翻译和自动车辆。

面向开发者的深度学习业务应用介绍涵盖了一些常见的DL算法,比如基于内容的推荐算法和自然语言处理。您将探索一些示例,例如使用全卷积神经网络(FCNN)和剩余神经网络(ResNets)进行视频预测。您还将看到DL用于控制机器人的应用程序,使用蒙特卡罗树搜索(用于在围棋游戏中击败人类)探索DeepQ学习算法,以及为财务风险评估建模。这里还将提到一组被称为生成对抗神经网络(GANs)的强大算法,它可用于图像着色、图像补全和样式转换。

读完这本书,你将对深度神经网络这一令人兴奋的领域有一个概述,并对深度学习的大部分主要应用有一个理解。这本书包含了一些代码示例、技巧和如何使用Keras框架训练深度学习模型的见解。

你将学到什么

  • 让我们来了解一下深度学习以及它为什么如此强大
  • 使用主要算法来训练深度学习模型
  • 深度学习应用方面的重大突破
  • 运行一些简单的示例,并选择一些深度学习库
  • 探索深度学习对商业的影响领域

这本书是给谁的

  • 数据科学家、企业家和商业开发人员。
成为VIP会员查看完整内容
0
30

首先加速介绍R生态系统、编程语言和工具,包括R脚本和RStudio。通过使用许多例子和项目,这本书教你如何将数据导入R,以及如何使用R处理这些数据。一旦基础扎实,《实用R 4》的其余部分将深入具体的项目和例子,从使用R和LimeSurvey运行和分析调查开始。接下来,您将使用R和MouselabWeb执行高级统计分析。然后,您将看到在没有统计信息的情况下R如何工作,包括如何使用R自动化数据格式化、操作、报告和自定义函数。

本书的最后一部分讨论了在服务器上使用R;您将使用R构建一个脚本,该脚本可以运行RStudio服务器并监视报表源的更改,以便在发生更改时向用户发出警报。这个项目包括定期电子邮件提醒和推送通知。最后,您将使用R创建一个定制的个人最重要信息的每日纲要报告,例如天气报告、每日日历、待办事项等等。这演示了如何自动化这样一个过程,以便用户每天早上导航到相同的web页面并获得更新的报告。

你将学到什么

  • 设置并运行R脚本,包括在新机器上的安装以及下载和配置R
  • 使用RStudio Server将任何机器变成可从任何地方访问的强大数据分析平台
  • 编写基本的脚本并修改现有的脚本以满足自己的需要。
  • 在R中创建基本的HTML报告,根据需要插入信息
  • 构建一个基本的R包并发布它

这本书是给谁的

  • 建议您之前接触过统计学、编程和SAS,但不是必需的。
成为VIP会员查看完整内容
0
50

通过这个紧凑的实用指南,开始使用Python进行数据分析。这本书包括三个练习和一个用正确的格式从Python代码中获取数据的案例研究。使用Python学习数据分析还可以帮助您使用分析发现数据中的意义,并展示如何可视化数据。

每一节课都尽可能是独立的,允许您根据需要插入和退出示例。如果您已经在使用Python进行数据分析,那么您会发现您希望知道如何使用Python来完成许多事情。然后,您可以将这些技术直接应用到您自己的项目中。

如果您不使用Python进行数据分析,那么本书从一开始就带您了解基础知识,为您在该主题中打下坚实的基础。当你阅读完这本书的时候,你会对如何使用Python进行数据分析有更好的理解。

你将学到什么

  • 从Python代码中获取数据
  • 准备数据及其格式
  • 找出数据的意义
  • 使用iPython可视化数据

这本书是给谁的

想学习使用Python进行数据分析的同学。建议您具有Python方面的经验,但不是必需的,因为您需要具有数据分析或数据科学方面的经验。

成为VIP会员查看完整内容
0
92

使用高级架构开发和优化深度学习模型。这本书教你错综复杂的细节和微妙的算法,是卷积神经网络的核心。在高级应用深度学习中,您将学习CNN的高级主题和使用Keras和TensorFlow的对象检测。

在此过程中,您将了解CNN中的基本操作,如卷积和池化,然后了解更高级的架构,如inception networks、resnets等等。当这本书讨论理论主题时,你会发现如何有效地与Keras工作,其中有许多技巧和提示,包括如何用自定义回调类自定义Keras登录,什么是迫切执行,以及如何在你的模型中使用它。最后,您将学习对象检测是如何工作的,并在Keras和TensorFlow中构建YOLO(只查看一次)算法的完整实现。在书的最后,你将实现各种各样的模型在Keras和学习许多高级技巧,将把你的技能到下一个水平。

你将学到什么

  • 看看卷积神经网络和目标检测是如何工作的
  • 在磁盘上的权值和模型
  • 暂停训练,在稍后的阶段重新开始
  • 在代码中使用硬件加速
  • 使用数据集TensorFlow抽象和使用预先训练的模型和迁移学习
  • 删除和添加层到预先训练的网络,使其适应您的特定项目
  • 将预先训练好的模型(如Alexnet和VGG16)应用到新的数据集

这本书是给谁的

  • 拥有中级到高级Python和机器学习技能的科学家和研究人员。此外,还需要Keras和TensorFlow的中级知识。
成为VIP会员查看完整内容
0
77

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
123

从设计和原型设计到测试、部署和维护,Python在许多方面都很有用,它一直是当今最流行的编程语言之一。这本实用的书的第三版提供了对语言的快速参考——包括Python 3.5、2.7和3.6的突出部分——它庞大的标准库中常用的区域,以及一些最有用的第三方模块和包。

本书非常适合具有一些Python经验的程序员,以及来自其他编程语言的程序员,它涵盖了广泛的应用领域,包括web和网络编程、XML处理、数据库交互和高速数字计算。了解Python如何提供优雅、简单、实用和强大功能的独特组合。

这个版本包括:

  • Python语法、面向对象的Python、标准库模块和第三方Python包
  • Python对文件和文本操作、持久性和数据库、并发执行和数值计算的支持
  • 网络基础、事件驱动编程和客户端网络协议模块
  • Python扩展模块,以及用于打包和分发扩展、模块和应用程序的工具
成为VIP会员查看完整内容
0
110

数据科学库、框架、模块和工具包非常适合进行数据科学研究,但它们也是深入研究这一学科的好方法,不需要真正理解数据科学。在本书中,您将了解到许多最基本的数据科学工具和算法都是通过从头实现来实现的。

如果你有数学天赋和一些编程技能,作者Joel Grus将帮助你熟悉作为数据科学核心的数学和统计,以及作为数据科学家的入门技能。如今,这些杂乱的、充斥着海量数据的数据,为一些甚至没人想过要问的问题提供了答案。这本书为你提供了挖掘这些答案的诀窍。

参加Python速成班

  • 学习线性代数、统计和概率的基础知识,并了解如何以及何时在数据科学中使用它们
  • 收集、探索、清理、分析和操作数据
  • 深入了解机器学习的基本原理
  • 实现诸如k近邻、朴素贝叶斯、线性和逻辑回归、决策树、神经网络和聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce和数据库
成为VIP会员查看完整内容
0
73

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
90

获得高级数据分析概念的广泛基础,并发现数据库中的最新革命,如Neo4j、Elasticsearch和MongoDB。这本书讨论了如何实现ETL技术,包括主题爬行,这是应用在诸如高频算法交易和面向目标的对话系统等领域。您还将看到机器学习概念的示例,如半监督学习、深度学习和NLP。使用Python的高级数据分析还包括时间序列和主成分分析等重要的传统数据分析技术。

读完这本书,你将对分析项目的每个技术方面都有了经验。您将了解使用Python代码的概念,并提供在您自己的项目中使用的示例。

你会学到什么

  • 使用数据分析技术,如分类、聚类、回归和预测
  • 处理结构化和非结构化数据、ETL技术以及不同类型的数据库,如Neo4j、Elasticsearch、MongoDB和M- ySQL
  • 考察不同的大数据框架,包括Hadoop和Spark
  • 发现先进的机器学习概念,如半监督学习,深度学习,和NLP

这本书是给谁看的

对数据分析领域感兴趣的数据科学家和软件开发人员。

成为VIP会员查看完整内容
0
91

简介:

科学专业人员可以通过本书学习Scikit-Learn库以及机器学习的基础知识。该书将Anaconda Python发行版与流行的Scikit-Learn库结合在一起,展示了各种有监督和无监督的机器学习算法。通过Python编写的清晰示例向读者介绍机器学习的原理,以及相关代码。

本书涵盖了掌握这些内容所需的所有应用数学和编程技能。不需要深入的面向对象编程知识,因为可以提供并说明完整的示例。必要时,编码示例很深入且很复杂。它们也简洁,准确,完整,是对引入的机器学习概念的补充。处理示例有助于建立理解和应用复杂机器学习算法所需的技能。

本书的学生将学习作为胜任力前提的基础知识。读者将了解专门为数据科学专业人员设计的Python Anaconda发行版,并将在流行的Scikit-Learn库中构建技能,该库是Python领域许多机器学习应用程序的基础。

本书内容包括:

  • 使用Scikit-Learn通用的简单和复杂数据集
  • 将数据处理为向量和矩阵以进行算法处理
  • 熟悉数据科学中使用的Anaconda发行版
  • 通过分类器,回归器和降维应用机器学习
  • 调整算法并为每个数据集找到最佳算法
  • 从CSV,JSON,Numpy和Pandas格式加载数据并保存

内容介绍:

这本书分为八章。 第1章介绍了机器学习,Anaconda和Scikit-Learn的主题。 第2章和第3章介绍算法分类。 第2章对简单数据集进行分类,第3章对复杂数据集进行分类。 第4章介绍了回归预测模型。 第5章和第6章介绍分类调整。 第5章调整简单数据集,第6章调整复杂数据集。 第7章介绍了预测模型回归调整。 第8章将所有知识汇总在一起,以整体方式审查和提出发现。

作者介绍:

David Paper博士是犹他州立大学管理信息系统系的教授。他写了两本书-商业网络编程:Oracle的PHP面向对象编程和Python和MongoDB的数据科学基础。他在诸如组织研究方法,ACM通讯,信息与管理,信息资源管理期刊,AIS通讯,信息技术案例与应用研究期刊以及远程计划等参考期刊上发表了70余篇论文。他还曾在多个编辑委员会担任过各种职务,包括副编辑。Paper博士还曾在德州仪器(TI),DLS,Inc.和凤凰城小型企业管理局工作。他曾为IBM,AT&T,Octel,犹他州交通运输部和空间动力实验室执行过IS咨询工作。 Paper博士的教学和研究兴趣包括数据科学,机器学习,面向对象的程序设计和变更管理。

目录:

成为VIP会员查看完整内容
0
64
小贴士
相关VIP内容
专知会员服务
30+阅读 · 2020年7月4日
专知会员服务
50+阅读 · 2020年7月1日
专知会员服务
92+阅读 · 2020年6月29日
专知会员服务
77+阅读 · 2020年6月20日
专知会员服务
123+阅读 · 2020年6月10日
专知会员服务
110+阅读 · 2020年5月21日
专知会员服务
73+阅读 · 2020年5月19日
相关论文
Talking-Heads Attention
Noam Shazeer,Zhenzhong Lan,Youlong Cheng,Nan Ding,Le Hou
11+阅读 · 2020年3月5日
Guneet S. Dhillon,Pratik Chaudhari,Avinash Ravichandran,Stefano Soatto
6+阅读 · 2020年3月1日
Learning Embedding Adaptation for Few-Shot Learning
Han-Jia Ye,Hexiang Hu,De-Chuan Zhan,Fei Sha
8+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Qianru Sun,Yaoyao Liu,Tat-Seng Chua,Bernt Schiele
5+阅读 · 2018年12月6日
Benjamin Recht
5+阅读 · 2018年6月25日
Yue Zhang,Jie Yang
12+阅读 · 2018年5月15日
Hongyu Xu,Xutao Lv,Xiaoyu Wang,Zhou Ren,Navaneeth Bodla,Rama Chellappa
3+阅读 · 2018年3月27日
Petar Veličković,Guillem Cucurull,Arantxa Casanova,Adriana Romero,Pietro Liò,Yoshua Bengio
6+阅读 · 2018年2月4日
Ju Yong Chang,Kyoung Mu Lee
3+阅读 · 2017年12月28日
Jonas Gehring,Michael Auli,David Grangier,Denis Yarats,Yann N. Dauphin
3+阅读 · 2017年7月25日
Top