【新书】自然语言处理表示学习技术,349页pdf,清华大学

2020 年 7 月 11 日 专知
语义表示是自然语言处理的基础,我们需要将原始文本数据中的有用信息转换为计算机能够理解的语义表示,才能实现各种自然语言处理应用。表示学习旨在从大规模数据中自动学习数据的语义特征表示,并支持机器学习进一步用于数据训练和预测。以深度学习为代表的表示学习技术,能够灵活地建立对大规模文本、音频、图像、视频等无结构数据的语义表示,显著提升语音识别、图像处理和自然语言处理的性能,近年来引发了人工智能的新浪潮。本书是第一本完整介绍自然语言处理表示学习技术的著作。书中全面介绍了表示学习技术在自然语言处理领域的最新进展,对相关理论、方法和应用进行了深入介绍,并展望了未来的重要研究方向。

地址:

https://link.springer.com/book/10.1007%2F978-981-15-5573-2

图书介绍




本书全面介绍了自然语言处理表示学习技术的理论、方法和应用,内容包括三大部分:第一部分介绍了单词、短语、句子和文档等不同粒度语言单元的表示学习技术;第二部分介绍了与自然语言密切相关的世界知识、语言知识、复杂网络和跨模态数据的表示学习技术;第三部分整理了相关开放资源与工具,并探讨了面向自然语言处理的表示学习技术面临的重要挑战和未来研究方向。本书对于自然语言处理和人工智能基础研究具有一定的参考意义,既适合专业人士了解自然语言处理和表示学习的前沿热点,也适合机器学习、信息检索、数据挖掘、社会网络分析、语义Web等其他相关领域学者和学生作为参考读物。 

作者介绍




刘知远,清华大学计算机系副教授、博士生导师。主要研究方向为表示学习、知识图谱和社会计算。2011年获得清华大学博士学位,已在ACL、IJCAI、AAAI等人工智能领域的著名国际期刊和会议发表相关论文80余篇,Google Scholar统计引用超过9,200次。入选《麻省理工科技评论》“35岁以下科技创新35人”中国区榜单(MIT TR-35 China)、智源青年科学家、中国科协青年人才托举工程。 

林衍凯,微信模式识别中心研究员,博士毕业于清华大学计算机系,主要研究方向包括表示学习、信息抽取与自动问答。目前已在人工智能、自然语言处理等领域的顶级国际会议IJCAI,AAAI,EMNLP,ACL发表相关论文多篇,Google Scholar引用数超过2,000。曾获清华大学学术新秀、百度学者等荣誉。

孙茂松,长聘教授,博士生导师。现任清华大学人工智能研究院常务副院长、清华大学计算机学位评定分委员会主席、教育部在线教育研究中心副主任、清华大学大规模在线开放教育研究中心主任,曾任清华大学计算机系主任、党委书记。研究方向为自然语言理解、中文信息处理、Web智能、社会计算和计算教育学等。国家973计划项目首席科学家,国家社会科学基金重大项目首席专家。在国际刊物、国际会议、国内核心刊物上共发表论文130余篇,Google Scholar引用数超过12,000。


全书目录

































参考来源:

TinghuaNLP-https://mp.weixin.qq.com/s/ChgI0WD0ksmcA8YgfkJiwg


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“NLPRL” 可以获取《自然语言处理表示学习技术,349页pdf》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

表示学习是通过利用训练数据来学习得到向量表示,这可以克服人工方法的局限性。 表示学习通常可分为两大类,无监督和有监督表示学习。大多数无监督表示学习方法利用自动编码器(如去噪自动编码器和稀疏自动编码器等)中的隐变量作为表示。 目前出现的变分自动编码器能够更好的容忍噪声和异常值。 然而,推断给定数据的潜在结构几乎是不可能的。 目前有一些近似推断的策略。 此外,一些无监督表示学习方法旨在近似某种特定的相似性度量。提出了一种无监督的相似性保持表示学习框架,该框架使用矩阵分解来保持成对的DTW相似性。 通过学习保持DTW的shaplets,即在转换后的空间中的欧式距离近似原始数据的真实DTW距离。有监督表示学习方法可以利用数据的标签信息,更好地捕获数据的语义结构。 孪生网络和三元组网络是目前两种比较流行的模型,它们的目标是最大化类别之间的距离并最小化了类别内部的距离。
【新书】图神经网络导论,清华大学刘知远老师著作
专知会员服务
361+阅读 · 2020年6月12日
【北大】知识图谱的关键技术及其智能应用
专知
112+阅读 · 2019年9月19日
CAAI-AIDL 第六期《自然语言处理》丨 京东何晓冬,清华大学唐杰
中国人工智能学会
10+阅读 · 2018年12月16日
刘知远 | 语义表示学习
开放知识图谱
16+阅读 · 2018年8月9日
清华大学刘知远:在 NLP 领域「做事」兼「发声」
AI科技评论
8+阅读 · 2017年11月18日
清华大学:刘洋——基于深度学习的机器翻译
人工智能学家
11+阅读 · 2017年11月13日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
15+阅读 · 2019年9月11日
Knowledge Representation Learning: A Quantitative Review
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关VIP内容
【新书】图神经网络导论,清华大学刘知远老师著作
专知会员服务
361+阅读 · 2020年6月12日
相关资讯
相关论文
Top
微信扫码咨询专知VIP会员