从0到1 | 0基础/转行如何用3个月搞定机器学习

2017 年 11 月 20 日 算法与数学之美
从0到1 | 0基础/转行如何用3个月搞定机器学习

写这篇文章的初衷是现在好多朋友都想了解如何入门/转行机器学习,搭上人工智能这列二十一世纪的快车。再加上这个问题每隔一阵子就会有人提及,因此想写篇文章来个一劳永逸。

文章的宗旨:

  1. 指出学习中的一些误区

  2. 提供客观可行的学习表

  3. 给出进阶学习的建议

目标读者是:

  1. 零基础,对人工智能感兴趣的读者

  2. 有基础,想将机器学习/数据分析和自己的本职工作相结合的朋友

  3. 在读的学生朋友

  4. 已工作,有其他编程基础想转人工智能的朋友


学习中的一些误区

1. 不要试图掌握所有相关的数学知识后再开始学习机器学习

一般人如果想要把这些知识都补全再开始机器学习往往需要很长时间,容易半途而废。而且这些知识是工具不是目的,我们的目标又不是成为数学家。建议在机器学习的过程中哪里不会补哪里,这样更有目的性且耗时更低。

2. 不过多收集资料 & 分辨资料的时效性

机器学习的资料很多,动辄就有几百G的材料可以下载观看,很多朋友都有“收集癖”,其实也就是放那而已。 在入门期间,建议“小而精”的选择资料,找准适合你的,看得懂的开始行动

3. 多实践,多认识一些行业大咖 多交流

机器学习一些算法选择毫不夸张的讲就是在实践中摸索经验和技巧,不行动肯定是不行的。

另外多跟一些行业大咖交流学习,有机会认识就一定要取得联系。这波人身上或身边有很多的资源和人脉,尽可能挖掘一些,不管是学习途中的问题请教还是以后的工作机会,这些能用得上的尽量不要放过。

机器学习课程表

Python基础 数学基础
函数-类-面向对象
容器、文件处理
模块、标准库
数据结构
概率论
统计学
线性代数
微积分
Python数据科学 监督学习
NumPy
SciPy
Pandas
Matplotlib
Scikit-Learn
决策树
线性回归
逻辑回归
朴素贝叶斯
支持向量机
集成学习
EM算法
非监督学习 半监督学习
K均值算法
DBSCAN聚类
主成分分析
协同过滤
标签传播
深度学习 深度学习框架
BP神经网络
卷积神经网络
循环神经网络
递归神经网络
深度神经网络
TensorFlow
MXNet
Caffe2
PaddlePaddle
Keras
PyTorch
自然语言处理 项目实战
Tf-idf
Word2Vec
FastText
垃圾邮件过滤
车牌号码识别
人脸识别
金融智能决策系统
自然语言情感分析
招聘网反诈骗系统
......

这个是一个比较系统的学习大纲,涉及到的知识面很多很广,期间的学习方法和技巧在这就凭这点文字肯定是讲不完,也讲不明白。

所以鉴于此,我准备了几节公开课,通过视频讲解、动画演示、应用场景、实习推荐等多方面来跟大家补充完善。

公开课的内容 (11月20号20:00开讲) :

  1. 完全0基础如何用3个月学会机器学习

  2. 朴素贝叶斯的垃圾邮件过滤实战

  3. 人脸识别(神经网络\OpenCV)

  4. 金融智能决策系统(时间序列)

  5. 自然语言情感分析机制

暂定这5个主题,后面持续更新,全部免费、全部免费、全部免费

大家可以加微信:midu25长按识别下面二维码来咨询听课细节, 注明: 公开课

我姓何,大家可以叫我 Pierre(皮尔),2013年中科院博士毕业后去法国国家科学院工作了2年多,考虑到想为祖国的AI发展贡献自己的一份力量(虽然微不足道),于16年回到国内,目前就职于北京某顶尖AI公司。

在北京的朋友可以线下认识一下,我这也有一些资源和渠道推荐给大家学习或实习或就业

深入研究,实践实战

恭喜你!如果你已经完成了上面的计划表,代表你已经有了相当的机器学习能力。

接下来就要尽早接触实战,可以是多种形式,如实习、工作、科研、进实验室等等都可以。

对于大部分已经工作的朋友来说,重新回到学校攻读学位并不现实,这个时候,你就可以试着把机器学习应用到你自己的工作当中。

最后,不管选择什么方向最重要的就是独立思考的能力,和踏出第一步的勇气。


登录查看更多
4

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
小贴士
相关资讯
机器学习必备的数学基础有哪些?
人工智能头条
6+阅读 · 2019年10月18日
从入门到头秃,2018年机器学习图书TOP10
新智元
11+阅读 · 2018年12月8日
做机器学习和AI必备的42个数学知识点
AI前线
6+阅读 · 2018年12月6日
第二章 机器学习中的数学基础
Datartisan数据工匠
8+阅读 · 2018年4月5日
【机器学习】机器学习和深度学习概念入门
产业智能官
6+阅读 · 2018年1月3日
从0到1 | 0基础/转行 如何用3个月学会机器学习|数据科学
数据挖掘入门与实战
5+阅读 · 2017年12月4日
【回顾】从零开始入门机器学习算法实践
AI研习社
4+阅读 · 2017年11月28日
数学不好,如何转行人工智能?
算法与数学之美
3+阅读 · 2017年11月17日
如何用 3 个月零基础入门机器学习?
AI研习社
5+阅读 · 2017年9月27日
相关VIP内容
专知会员服务
132+阅读 · 2020年6月10日
专知会员服务
75+阅读 · 2020年5月19日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
192+阅读 · 2020年3月17日
机器学习速查手册,135页pdf
专知会员服务
160+阅读 · 2020年3月15日
专知会员服务
115+阅读 · 2020年2月11日
【新书】Python编程基础,669页pdf
专知会员服务
90+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
34+阅读 · 2019年10月10日
相关论文
Shaolei Wang,Wanxiang Che,Qi Liu,Pengda Qin,Ting Liu,William Yang Wang
4+阅读 · 2019年8月15日
Applying Faster R-CNN for Object Detection on Malaria Images
Jane Hung,Deepali Ravel,Stefanie C. P. Lopes,Gabriel Rangel,Odailton Amaral Nery,Benoit Malleret,Francois Nosten,Marcus V. G. Lacerda,Marcelo U. Ferreira,Laurent Rénia,Manoj T. Duraisingh,Fabio T. M. Costa,Matthias Marti,Anne E. Carpenter
3+阅读 · 2019年3月11日
Learning a Deep ConvNet for Multi-label Classification with Partial Labels
Thibaut Durand,Nazanin Mehrasa,Greg Mori
5+阅读 · 2019年2月26日
Piotr Szymański,Tomasz Kajdanowicz,Nitesh Chawla
3+阅读 · 2019年1月1日
Ahmet Iscen,Giorgos Tolias,Yannis Avrithis,Ondrej Chum
6+阅读 · 2018年3月29日
Nicole Novielli,Daniela Girardi,Filippo Lanubile
3+阅读 · 2018年3月17日
Yi-Nan Li,Mei-Chen Yeh
5+阅读 · 2018年2月21日
Amritanshu Agrawal,Wei Fu,Tim Menzies
3+阅读 · 2018年2月20日
Antonia Creswell,Anil Anthony Bharath
6+阅读 · 2018年1月4日
Pushpankar Kumar Pushp,Muktabh Mayank Srivastava
3+阅读 · 2017年12月23日
Top