The metric dimension dim(G) of a graph $G$ is the minimum cardinality of a subset $S$ of vertices of $G$ such that each vertex of $G$ is uniquely determined by its distances to $S$. It is well-known that the metric dimension of a graph can be drastically increased by the modification of a single edge. Our main result consists in proving that the increase of the metric dimension of an edge addition can be amortized in the sense that if the graph consists of a spanning tree $T$ plus $c$ edges, then the metric dimension of $G$ is at most the metric dimension of $T$ plus $6c$. We then use this result to prove a weakening of a conjecture of Eroh et al. The zero forcing number $Z(G)$ of $G$ is the minimum cardinality of a subset $S$ of black vertices (whereas the other vertices are colored white) of $G$ such that all the vertices will turned black after applying finitely many times the following rule: a white vertex is turned black if it is the only white neighbor of a black vertex. Eroh et al. conjectured that, for any graph $G$, $dim(G)\leq Z(G) + c(G)$, where $c(G)$ is the number of edges that have to be removed from $G$ to get a forest. They proved the conjecture is true for trees and unicyclic graphs. We prove a weaker version of the conjecture: $dim(G)\leq Z(G)+6c(G)$ holds for any graph. We also prove that the conjecture is true for graphs with edge disjoint cycles, widely generalizing the unicyclic result of Eroh et al.


翻译:图形 $G$ (G) 的衡量维度 dim (G) 。 我们的主要结果在于证明, 边端添加的衡量维度的增加可以被摊销, 也就是说, 如果图表包含一个横跨树平面的6美元加美元边缘, 那么$G$的衡量维度最多为$G$加6美元的衡量维度。 这样, 美元每面的顶点就由距离与美元之间的距离来决定。 众所周知, 一个图形的衡量维度可以通过修改一个单一边缘而大幅提高。 我们的主要结果就是证明, 边端增加的度是黑面的一个子S美元( 而其他的顶点是白白的), 那么所有顶点在应用“ 美元” 美元加上 $ 6c$ 的衡量维度时, $G$ 的衡量维度最多为$G$ 。 白色和“ G” 也证明, 美元是黑色的, 。 对于正面的颜色是任何G+美元, 。 对于正面的颜色是黑色的, 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
82+阅读 · 2020年12月5日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
0+阅读 · 2022年1月15日
Geometry of Dependency Equilibria
Arxiv
0+阅读 · 2022年1月14日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月17日
Arxiv
0+阅读 · 2022年1月15日
Geometry of Dependency Equilibria
Arxiv
0+阅读 · 2022年1月14日
Arxiv
54+阅读 · 2022年1月1日
Top
微信扫码咨询专知VIP会员