Recent medical imaging studies have given rise to distinct but inter-related datasets corresponding to multiple experimental tasks or longitudinal visits. Standard scalar-on-image regression models that fit each dataset separately are not equipped to leverage information across inter-related images, and existing multi-task learning approaches are compromised by the inability to account for the noise that is often observed in images. We propose a novel joint scalar-on-image regression framework involving wavelet-based image representations with grouped penalties that are designed to pool information across inter-related images for joint learning, and which explicitly accounts for noise in high-dimensional images via a projection-based approach. In the presence of non-convexity arising due to noisy images, we derive non-asymptotic error bounds under non-convex as well as convex grouped penalties, even when the number of voxels increases exponentially with sample size. A projected gradient descent algorithm is used for computation, which is shown to approximate the optimal solution via well-defined non-asymptotic optimization error bounds under noisy images. Extensive simulations and application to a motivating longitudinal Alzheimer's disease study illustrate significantly improved predictive ability and greater power to detect true signals, that are simply missed by existing methods without noise correction due to the attenuation to null phenomenon.
翻译:最近医学成像研究产生了与多个实验任务或纵向访问相适应的不同但相互关联的数据集。适合每个数据集的不同标准图像反射模型没有装备,无法在相互关联的图像中利用信息。现有的多任务学习方法由于无法解释图像中经常观察到的噪音而受到影响。我们提议了一个新型的以波盘为基础的图像代表群组成的图像缩影联合缩影框架,其组合惩罚旨在将信息汇集在多个实验任务或纵向访问中,并通过投影方式明确说明高维图像中的噪音。在由于噪音图像产生的非康维度情况下,我们得出非非不适的错误在非康维克斯和convex组合惩罚之下,即使 voxels数量随着样本大小而急剧增加。预测的梯度下沉降算法用于计算,通过明确界定的非防患性图像来将最佳解决方案集中起来,并明确说明在噪音图像下存在高维度图像中的噪音。在不响的图像中出现非康维度时,我们在非康维克斯和convex 组合惩罚下,我们得出非非非不稳性错误的误判误判误判误判的误判误判误判误判错误的误判错误方法。在更深的模拟和应用上,将更精确地模拟和应用更精确判能力,将更精确测为测为更精确测为测为测为测错判能力,通过测为测为测错判的惯制的精确测错。