Medical image diagnosis can be achieved by deep neural networks, provided there is enough varied training data for each disease class. However, a hitherto unknown disease class not encountered during training will inevitably be misclassified, even if predicted with low probability. This problem is especially important for medical image diagnosis, when an image of a hitherto unknown disease is presented for diagnosis, especially when the images come from the same image domain, such as dermoscopic skin images. Current out-of-distribution detection algorithms act unfairly when the in-distribution classes are imbalanced, by favouring the most numerous disease in the training sets. This could lead to false diagnoses for rare cases which are often medically important. We developed a novel yet simple method to train neural networks, which enables them to classify in-distribution dermoscopic skin disease images and also detect novel diseases from dermoscopic images at test time. We show that our BinaryHeads model not only does not hurt classification balanced accuracy when the data is imbalanced, but also consistently improves the balanced accuracy. We also introduce an important method to investigate the effectiveness of out-of-distribution detection methods based on presence of varying amounts of out-of-distribution data, which may arise in real-world settings.


翻译:深入的神经网络可以实现医学图像诊断,条件是每个疾病类别都有足够的不同培训数据。然而,培训期间没有遇到的迄今未知的疾病类别不可避免地会被错误地分类,即使预测的概率较低。当将迄今未知疾病图像提交诊断时,这一问题对于医学图像诊断尤其重要,特别是当图像来自相同的图像领域,如皮肤发热图像时。当分配类别不平衡时,目前的分配外检测算法不公平,有利于培训组中数量最多的疾病。这可能导致对罕见病例的错误诊断,而这些病例往往在医学上很重要。我们开发了一种新颖而简单的神经网络培训方法,使其能够在分布性脱热皮肤疾病图像中进行分类,并且从测试时的脱热图像中检测新疾病。我们表明,我们的分流头模型在数据不平衡时不仅不会损害分类平衡的准确性,而且会不断提高平衡的准确性。我们还引入了一种重要方法来调查分布外检测方法,这些方法基于不同数量的数据在真实的变异环境中出现。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
专知会员服务
41+阅读 · 2021年5月26日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
30+阅读 · 2020年3月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员