The recent advances of Augmented Reality (AR) in healthcare have shown that technology is a significant part of the current healthcare system. In recent days, augmented reality has proposed numerous smart applications in healthcare domain including wearable access, telemedicine, remote surgery, diagnosis of medical reports, emergency medicine, etc. The aim of the developed augmented healthcare application is to improve patient care, increase efficiency, and decrease costs. This article puts on an effort to review the advances in AR-based healthcare technologies and goes to peek into the strategies that are being taken to further this branch of technology. This article explores the important services of augmented-based healthcare solutions and throws light on recently invented ones as well as their respective platforms. It also addresses concurrent concerns and their relevant future challenges. In addition, this paper analyzes distinct AR security and privacy including security requirements and attack terminologies. Furthermore, this paper proposes a security model to minimize security risks. Augmented reality advantages in healthcare, especially for operating surgery, emergency diagnosis, and medical training is being demonstrated here thorough proper analysis. To say the least, the article illustrates a complete overview of augmented reality technology in the modern healthcare sector by demonstrating its impacts, advancements, current vulnerabilities; future challenges, and concludes with recommendations to a new direction for further research.

0
下载
关闭预览

相关内容

增强现实(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。

Recently, we witness a rapid increase in the use of machine learning in self-adaptive systems. Machine learning has been used for a variety of reasons, ranging from learning a model of the environment of a system during operation to filtering large sets of possible configurations before analysing them. While a body of work on the use of machine learning in self-adaptive systems exists, there is currently no systematic overview of this area. Such overview is important for researchers to understand the state of the art and direct future research efforts. This paper reports the results of a systematic literature review that aims at providing such an overview. We focus on self-adaptive systems that are based on a traditional Monitor-Analyze-Plan-Execute feedback loop (MAPE). The research questions are centred on the problems that motivate the use of machine learning in self-adaptive systems, the key engineering aspects of learning in self-adaptation, and open challenges. The search resulted in 6709 papers, of which 109 were retained for data collection. Analysis of the collected data shows that machine learning is mostly used for updating adaptation rules and policies to improve system qualities, and managing resources to better balance qualities and resources. These problems are primarily solved using supervised and interactive learning with classification, regression and reinforcement learning as the dominant methods. Surprisingly, unsupervised learning that naturally fits automation is only applied in a small number of studies. Key open challenges in this area include the performance of learning, managing the effects of learning, and dealing with more complex types of goals. From the insights derived from this systematic literature review we outline an initial design process for applying machine learning in self-adaptive systems that are based on MAPE feedback loops.

0
0
下载
预览

Smart healthcare systems (SHSs) are providing fast and efficient disease treatment leveraging wireless body sensor networks (WBSNs) and implantable medical devices (IMDs)-based internet of medical things (IoMT). In addition, IoMT-based SHSs are enabling automated medication, allowing communication among myriad healthcare sensor devices. However, adversaries can launch various attacks on the communication network and the hardware/firmware to introduce false data or cause data unavailability to the automatic medication system endangering the patient's life. In this paper, we propose SHChecker, a novel threat analysis framework that integrates machine learning and formal analysis capabilities to identify potential attacks and corresponding effects on an IoMT-based SHS. Our framework can provide us with all potential attack vectors, each representing a set of sensor measurements to be altered, for an SHS given a specific set of attack attributes, allowing us to realize the system's resiliency, thus the insight to enhance the robustness of the model. We implement SHChecker on a synthetic and a real dataset, which affirms that our framework can reveal potential attack vectors in an IoMT system. This is a novel effort to formally analyze supervised and unsupervised machine learning models for black-box SHS threat analysis.

0
0
下载
预览

Reinforcement Learning (RL) is a key technique to address sequential decision-making problems and is crucial to realize advanced artificial intelligence. Recent years have witnessed remarkable progress in RL by virtue of the fast development of deep neural networks. Along with the promising prospects of RL in numerous domains, such as robotics and game-playing, transfer learning has arisen as an important technique to tackle various challenges faced by RL, by transferring knowledge from external expertise to accelerate the learning process. In this survey, we systematically investigate the recent progress of transfer learning approaches in the context of deep reinforcement learning. Specifically, we provide a framework for categorizing the state-of-the-art transfer learning approaches, under which we analyze their goals, methodologies, compatible RL backbones, and practical applications. We also draw connections between transfer learning and other relevant topics from the RL perspective and explore their potential challenges as well as open questions that await future research progress.

0
1
下载
预览

Since the advent of bitcoin in 2008, the concept of a blockchain has widely spread. Besides crypto currencies and trading activities, there is a wide range of potential application areas where blockchains are providing the main building block for secure solutions. From a technical point of view, a blockchain involves a set of cryptographic primitives to provide a data structure with security and trust properties. However, a blockchain is not a golden bullet. It may be well suited for some problems, but often an inappropriate data structure for many applications. In this paper, we review the high-level concept of a blockchain and present possible applications in the military field. Our review is targeted to readers with little prior domain knowledge as a support to decide where it makes sense to use a blockchain and where a blockchain might not be the right tool at hand.

0
0
下载
预览

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on https://github.com/sheqi/GAN_Review.

0
27
下载
预览

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

0
12
下载
预览

The rapid advancements in machine learning, graphics processing technologies and availability of medical imaging data has led to a rapid increase in use of machine learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, brief mathematical description of 3D CNN and the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection, and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models, in general) and possible future trends in the field.

0
8
下载
预览

Attention is an increasingly popular mechanism used in a wide range of neural architectures. Because of the fast-paced advances in this domain, a systematic overview of attention is still missing. In this article, we define a unified model for attention architectures for natural language processing, with a focus on architectures designed to work with vector representation of the textual data. We discuss the dimensions along which proposals differ, the possible uses of attention, and chart the major research activities and open challenges in the area.

0
17
下载
预览

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

0
61
下载
预览

A recent research trend has emerged to identify developers' emotions, by applying sentiment analysis to the content of communication traces left in collaborative development environments. Trying to overcome the limitations posed by using off-the-shelf sentiment analysis tools, researchers recently started to develop their own tools for the software engineering domain. In this paper, we report a benchmark study to assess the performance and reliability of three sentiment analysis tools specifically customized for software engineering. Furthermore, we offer a reflection on the open challenges, as they emerge from a qualitative analysis of misclassified texts.

0
3
下载
预览
小贴士
相关论文
Omid Gheibi,Danny Weyns,Federico Quin
0+阅读 · 3月6日
Nur Imtiazul Haque,Mohammad Ashiqur Rahman,Md Hasan Shahriar,Alvi Ataur Khalil,Selcuk Uluagac
0+阅读 · 3月5日
Transfer Learning in Deep Reinforcement Learning: A Survey
Zhuangdi Zhu,Kaixiang Lin,Jiayu Zhou
1+阅读 · 3月4日
Luca Gambazzi,Patrick Schaller,Alain Mermoud,Vincent Lenders
0+阅读 · 3月3日
Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy
Zhengwei Wang,Qi She,Tomas E. Ward
27+阅读 · 2020年12月21日
Lingjuan Lyu,Han Yu,Xingjun Ma,Lichao Sun,Jun Zhao,Qiang Yang,Philip S. Yu
12+阅读 · 2020年12月7日
3D Deep Learning on Medical Images: A Review
Satya P. Singh,Lipo Wang,Sukrit Gupta,Haveesh Goli,Parasuraman Padmanabhan,Balázs Gulyás
8+阅读 · 2020年4月1日
Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing
Andrea Galassi,Marco Lippi,Paolo Torroni
17+阅读 · 2019年2月4日
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou,Ganqu Cui,Zhengyan Zhang,Cheng Yang,Zhiyuan Liu,Maosong Sun
61+阅读 · 2018年12月20日
Nicole Novielli,Daniela Girardi,Filippo Lanubile
3+阅读 · 2018年3月17日
相关VIP内容
专知会员服务
66+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
45+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
37+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
4+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
3+阅读 · 2018年6月24日
深度学习医学图像分析文献集
机器学习研究会
13+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
8+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
4+阅读 · 2017年6月29日
Top