The Erd\H{o}s--Anning theorem states that every point set in the Euclidean plane with integer distances must be either collinear or finite. More strongly, for any (non-degenerate) triangle of diameter $\delta$, at most $O(\delta^2)$ points can have integer distances from all three triangle vertices. We prove the same results for any strictly convex distance function on the plane, and analogous results for every two-dimensional complete Riemannian manifold of bounded genus and for geodesic distance on the boundary of every three-dimensional Euclidean convex set. Our proofs are based on the properties of additively weighted Voronoi diagrams of these distances.
翻译:暂无翻译