Point cloud registration is a key task in many computational fields. Previous correspondence matching based methods require the point clouds to have distinctive geometric structures to fit a 3D rigid transformation according to point-wise sparse feature matches. However, the accuracy of transformation heavily relies on the quality of extracted features, which are prone to errors with respect partiality and noise of the inputs. In addition, they can not utilize the geometric knowledge of all regions. On the other hand, previous global feature based deep learning approaches can utilize the entire point cloud for the registration, however they ignore the negative effect of non-overlapping points when aggregating global feature from point-wise features. In this paper, we present OMNet, a global feature based iterative network for partial-to-partial point cloud registration. We learn masks in a coarse-to-fine manner to reject non-overlapping regions, which converting the partial-to-partial registration to the registration of the same shapes. Moreover, the data used in previous works are only sampled once from CAD models for each object, resulting the same point cloud for the source and the reference. We propose a more practical manner for data generation, where a CAD model is sampled twice for the source and the reference point clouds, avoiding over-fitting issues that commonly exist previously. Experimental results show that our approach achieves state-of-the-art performance compared to traditional and deep learning methods.


翻译:云层注册在许多计算字段中是一项关键任务。 以往的通信匹配基于的方法要求点云有独特的几何结构, 以适合三维僵硬转换, 以点点对点、 稀少的特性匹配。 但是, 转换的准确性在很大程度上取决于提取的特性的质量, 这些特性在片面和输入的噪音方面容易出错。 此外, 它们不能利用所有区域的几何知识。 另一方面, 以前的基于全球特征的深层次学习方法可以使用整个点云进行登记, 但是它们忽略了点在从点对点特征汇集全球特征时不重叠点的负面效应。 在本文中, 我们提出了一个基于点对点的基于全球特征的迭接网络 。 我们以粗略对点的方式学习掩码, 以拒绝不重叠的区域, 这些区域将部分对点的注册转换成相同形状的注册。 此外, 以前的作品中所使用的数据只能从每个对象的 CAD 模型中取样一次, 产生相同的源和参照点。 我们为数据生成一个更加实用的方法, 将传统的云层的生成方法比以往的实验性模型, 将两次显示我们共同的云层样的样本。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
简明扼要!Python教程手册,206页pdf
专知会员服务
46+阅读 · 2020年3月24日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
23+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员